Flood Mitigation Strategy Based on Hydrological and Hydraulic Modelling in the Urban Area
Abstract
The urgency of this research lies in the need for a scientific-based solution in understanding the pattern of runoff and flood inundation to support effective mitigation planning. This study aims to analyze the characteristics of the Tallo River runoff before and after infrastructure development; identify the main factors causing flood inundation in the affected area and develop flood mitigation strategies based on hydrological and hydraulic modeling. The methods used include data collection using 15 years of rainfall data (2010–2024), topographic maps (DEM), and land use information; hydrological analysis by calculating the design flood discharge using the Rational and Nakayasu methods; hydraulic modeling with HEC-RAS 2D flood inundation simulation to understand the pattern of inundation distribution due to increasing runoff discharge; evaluation of the impact of development by comparing the runoff discharge before and after development and identifying its contribution to flood risk and mitigation strategies by compiling technical recommendations such as raising the embankment, improving drainage, and increasing the elevation of the affected area. The results of the study indicate that flooding in the Tallo River is mainly caused by the river's inability to accommodate the runoff discharge and the backwater effect of the urban drainage system. The increase in discharge due to the construction of a shopping center was recorded as very small (0.84 m³/second) and was not significant to the occurrence of flooding. The proposed mitigation strategies include building a 2.5-meter high embankment, increasing drainage capacity, and regulating the elevation of the affected area.
References
Adesina, E. A., Odumosu, J. O., Ajayi, O. G., Musa, A., Onuigbo, I. C., & Adesiji, A. R. (2025). Evaluating the impact of the Spatial resolution of digital elevation models on flood modelling. Water Resources Management, 1-32. http://dx.doi.org/10.1007/s11269-025-04206-6
Angelakis, A. N., Capodaglio, A. G., Valipour, M., Krasilnikoff, J., Ahmed, A. T., Mandi, L., ... & Dercas, N. (2023). Evolution of floods: from ancient times to the present times (CA 7600 BC to the present) and the future. Land, 12(6), 1211. http://dx.doi.org/10.3390/land12061211
BR, S. H. (1990). Hydrological analysis. Yogyakarta: Inter-University Center - Engineering Sciences.
Cook, M. (2023). A river with a city problem: a history of Brisbane floods. Univ. of Queensland Press.
Enow, S. T. (2022). Price clustering in international financial markets during the COVID-19 pandemic and its implications. Eurasian Journal of Economics and Finance, 10(2), 46–53. https://doi.org/10.15604/ejef.2022.10.02.001
Gunawan, G. (2018). Final project: Bengkulu water flood forecasting model using HEC-RAS application and geographic information system [Unpublished undergraduate thesis].
Hadisusanto, N. (2011). Hydrology applications. Yogyakarta: Jogja Media Utama.
Hamidifar, H., Nones, M., & Rowinski, P. M. (2024). Flood modeling and fluvial dynamics: A scoping review on the role of sediment transport. Earth-Science Reviews, 253, 104775. https://doi.org/10.1016/j.earscirev.2024.104775
Hou, Y., Wei, Y., Wu, S., & Li, J. (2023). Mapping the social, economic, and ecological impact of floods in Brisbane. Water, 15(21), 3842. https://doi.org/10.3390/w15213842
Jaramillo-González, R., Martínez, L., Aristizábal, É., Aristizábal, E. F. G., & Marín, R. J. (2023). Definition of rainfall thresholds for shallow landslides in Colombian tropical mountainous catchments as debris flow triggering mechanism. E3S Web of Conferences, 415, 5009. https://doi.org/10.1051/e3sconf/202341505009
Javadinejad, S. (2022). Causes and consequences of floods: flash floods, urban floods, river floods and coastal floods. Resources Environment and Information Engineering, 4(1), 173-183. http://dx.doi.org/10.25082/REIE.2022.01.002
Kalore, S. A., & Babu, G. S. (2023). Hydraulic design of granular and geocomposite drainage layers in pavements based on demand-capacity modeling. Geotextiles and Geomembranes, 51(5), 131-143. http://dx.doi.org/10.1016/j.geotexmem.2023.06.001
Kamiana, M. (2011). Design discharge calculation technique for water structures. Yogyakarta: Graha Ilmu.
Kaur, M. (2022). Impact of urban densification on buried water infrastructure: assessing optimal growth scenarios (Doctoral dissertation, University of British Columbia).
Khafifah, H. N., Mustari, W., Kasmawati., & Gaffar, F. (2023). Hydraulic analysis of Tallo River using HEC-RAS application. National Conference on Civil Engineering, 15, [page number if available].
Kim, S. W., Chun, K. W., Kim, M., Catani, F., Choi, B., & Seo, J. I. (2020). Effect of antecedent rainfall conditions and their variations on shallow landslide-triggering rainfall thresholds in South Korea. Landslides, 18(2), 569–582. https://doi.org/10.1007/s10346-020-01505-4
Klau, R. R., Lango, A. K. W., Krisnayanti, D. S., Udiana, I. M., & Rozari, P. D. (2024). Prediction of peak discharge using the SCS Curve Number method in the Manikin Watershed. IOP Conference Series: Earth and Environmental Science, 1343(1), 012007. https://doi.org/10.1088/1755-1315/1343/1/012007
Kodatie, R. J. (2013). Rekayasa dan manajemen banjir kota. Yogyakarta: CV ANDI OFFSET.
Kripalani, R. H., & Kulkarni, A. (1997). Rainfall variability over South‒east Asia—connections with Indian monsoon and ENSO extremes: new perspectives. International Journal of Climatology: A Journal of the Royal Meteorological Society, 17(11), 1155-1168. http://dx.doi.org/10.1002/(SICI)1097-0088(199709)17:11%3C1155::AID-JOC188%3E3.0.CO;2-B
LaHaye, O., Habib, E. H., & Saad, H. A. (2023). Watershed-Scale Evaluation of Flood Mitigation Benefits from Surface Water Diversion and Subsurface Injection in Coastal Louisiana. Journal of Water Resources Planning and Management, 149(10), 04023053. http://dx.doi.org/10.1061/JWRMD5.WRENG-5739
Lanzante, J. R. (2021). Testing for differences between two distributions in the presence of serial correlation using the Kolmogorov–Smirnov and Kuiper’s tests. International Journal of Climatology, 41(14), 6314–6323. https://doi.org/10.1002/joc.7196
Leducq, D., & Scarwell, H. J. (2018). The new Hanoi: Opportunities and challenges for future urban development. Cities, 72, 70-81. http://dx.doi.org/10.1016/j.cities.2017.08.003
Limantara, L. M. (2010). Hidrologi praktis. Bandung: Lubuk Agung.
Ma, Y., Cui, Y., Tan, H., & Wang, H. (2022). Case study: Diagnosing China's prevailing urban flooding—Causes, challenges, and solutions. Journal of Flood Risk Management, 15(3), e12822. http://dx.doi.org/10.1111/jfr3.12822
Marselina, M., Nurhayati, S. A., & Pandia, S. L. (2022). Flood analysis and estimating economic losses in an affected area (case study: Cikapundung Watershed). Air, Soil and Water Research, 15. https://doi.org/10.1177/11786221221131277
Mukta, A. Y., Haque, M. E., Islam, A. R. M. T., Fattah, M. A., Gustave, W., Almohamad, H., ... & Ghassan Abdo, H. (2022). Impact of canal encroachment on flood and economic vulnerability in Northern Bangladesh. Sustainability, 14(14), 8341. https://doi.org/10.3390/su14148341
Nandargi, S., & Dhar, O. N. (2012). Extreme rainstorm events over the northwest Himalayas during 1875–2010. Journal of Hydrometeorology, 13(4), 1383-1388. http://dx.doi.org/10.1175/JHM-D-12-08.1
Nguyen, H. N., Fukuda, H., & Nguyen, M. N. (2024). Assessment of the susceptibility of urban flooding using GIS with an analytical hierarchy process in Hanoi, Vietnam. Sustainability, 16(10), 3934. https://doi.org/10.3390/su16103934
Patil, M. S., & Kambekar, A. R. (2022). Floodplain mapping using hydraulic simulation and geographic information system. Indian Journal of Science and Technology, 15(39), 2027–2036. https://doi.org/10.17485/ijst/v15i39.1056
Peraturan Pemerintah Republik Indonesia. (2011). Peraturan Pemerintah Republik Indonesia tentang Sungai (PP No. 38 Tahun 2011).
Prana, A. M., Dionisio, R., Curl, A., Hart, D., Gomez, C., Apriyanto, H., & Prasetya, H. (2024). Informal adaptation to flooding in North Jakarta, Indonesia. Progress in planning, 186, 100851. /10.1016/j.progress.2024.100851
Ramos, H. M., & Besharat, M. (2021). Urban flood risk and economic viability analyses of a smart sustainable drainage system. Sustainability, 13(24), 13889. https://doi.org/10.3390/su132413889
Rauf, I. (2025). Flood control hydraulic modelling of Meja Watershed with structural approach using HEC-RAS 6.4. IOP Conference Series: Earth and Environmental Science, 1454(1), 012015. https://doi.org/10.1088/1755-1315/1454/1/012015
Rijal, S., Nursaputra, M., & Dari, H. U. (2024). Flood Susceptibility Analysis Using Frequency Ratio Method in Walanae Watershed. International Journal of Sustainable Development & Planning, 19(3). https://doi.org/10.18280/ijsdp.190302
Ruezzene, C. B., Miranda, R. B. d., Bolleli, T. M., & Mauad, F. F. (2021). Filling and validating rainfall data based on statistical techniques and artificial intelligence. Ambiente e Agua - An Interdisciplinary Journal of Applied Science, 16(6), 1–14. https://doi.org/10.4136/ambi-agua.2767
Sadiqzai, H. Y., Khan, A. U., Khan, F. A., Ullah, B., & Khan, J. (2024). Flood inundation mapping under climate change scenarios: Insights from CMIP6. Water Practice & Technology, 19(6), 2419–2441. https://doi.org/10.2166/wpt.2024.146
Salvadore, E., Bronders, J., & Batelaan, O. (2015). Hydrological modelling of urbanized catchments: A review and future directions. Journal of hydrology, 529, 62-81. http://dx.doi.org/10.1016/j.jhydrol.2015.06.028
Setyawan, A., Koddeng, B., & Patandianan, M. V. (2013). Identification of flood-prone areas along the Tallo River in Makassar City. Journal of Maritime Regions and Cities, 1(2).
Shamkhi, M. S., Azeez, M. K., & Obeid, Z. H. (2022). Deriving rainfall intensity–duration–frequency (IDF) curves and testing the best distribution using EasyFit Software 5.5 for Kut City, Iraq. Open Engineering, 12(1), 834–843. https://doi.org/10.1515/eng-2022-0330
Sheng, S., Chen, H., Lin, K., Zhou, Y., Wang, J., Chen, J., Xiong, L., Guo, S., & Xu, C.-Y. (2023). Enhancing runoff simulation precision in the critical zone through spatiotemporal interpolation of areal rainfall with matrix decomposition. Hydrological Processes, 37(11). https://doi.org/10.1002/hyp.15039
Shuster, W. D., Bonta, J., Thurston, H., Warnemuende, E., & Smith, D. R. (2005). Impacts of impervious surface on watershed hydrology: A review. Urban Water Journal, 2(4), 263-275. http://dx.doi.org/10.1080/15730620500386529
Tan, W., Liew, W. S., & Ling, L. (2021). Statistical modelling of extreme rainfall in Peninsular Malaysia. ITM Web of Conferences, 36, 01012. https://doi.org/10.1051/itmconf/20213601012
Xing, Z., Yang, S., Zan, X., Dong, X., Yao, Y., Liu, Z., & Zhang, X. (2023). Flood vulnerability assessment of urban buildings based on integrating high-resolution remote sensing and street view images. Sustainable Cities and Society, 92, 104467. http://dx.doi.org/10.1016/j.scs.2023.104467
Zhang, X., Han, L., Wei, H., Tan, X., Zhou, W., Li, W., & Qian, Y. (2022). Linking urbanization and air quality together: A review and a perspective on the future sustainable urban development. Journal of Cleaner Production, 346, 130988. https://doi.org/10.1016/j.jclepro.2022.130988
Copyright (c) 2025 Journal La Lifesci

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



