Computational and Experimental Evaluation of Alkaloid Compounds from Papaver somniferum as Dual COX-2 and TNF-α Inhibitors

  • Poyizar Department of Pharmacy, STIKES Pelita Ibu, Kendari City, Southeast Sulawesi, Indonesia
  • Nurfitriyana Rahmat Department of Pharmacy, STIKES Pelita Ibu, Kendari City, Southeast Sulawesi, Indonesia
  • Syaiful Katadi Department of Pharmacy, STIKES Pelita Ibu, Kendari City, Southeast Sulawesi, Indonesia
  • Rahayu Aprianti Department of Pharmacy, STIKES Pelita Ibu, Kendari City, Southeast Sulawesi, Indonesia
  • Irman Idrus Department of Pharmacy, STIKES Pelita Ibu, Kendari City, Southeast Sulawesi, Indonesia
Keywords: Alkaloids, Papaver Somniferum, Dual COX-2 and TNF-α, Inhibitors, Computational Study, Experimental Assay

Abstract

This study aimed to evaluate the computational and experimental potential of alkaloid compounds isolated from Papaver somniferum as dual inhibitors of cyclooxygenase-2 (COX-2) and tumor necrosis factor-alpha (TNF-α) in an in vitro inflammatory model. The alkaloid fraction was purified from dried capsules/latex of Papaver somniferum and subsequently tested using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Anti-inflammatory activity was assessed by measuring reductions in prostaglandin E₂ (PGE₂) production as an indicator of COX-2 inhibition and TNF-α levels in the cell culture supernatant. Preliminary safety evaluation was conducted using an MTT cytotoxicity assay on non-tumor cells, along with analysis of COX-2 and TNF-α gene expression using RT-qPCR. The alkaloid fraction exhibited concentration-dependent inhibitory effects on both PGE₂ and TNF-α production, with IC₅₀ values observed within the intermediate concentration range. In contrast, the CC₅₀ value in non-tumor cells was substantially higher, resulting in a favorable selectivity index that suggests a relatively wide therapeutic window. Furthermore, treatment with non-toxic concentrations of the alkaloid fraction led to a significant downregulation of COX-2 and TNF-α mRNA expression, supporting the hypothesis that its anti-inflammatory mechanism involves modulation of pro-inflammatory transcriptional pathways. Overall, the alkaloid fraction derived from Papaver somniferum demonstrates promising potential as a multitarget anti-inflammatory agent and warrants further investigation as a source of lead compounds or phytopharmaceutical candidates for the treatment of chronic inflammatory diseases.

References

Aalinezhad, S., Dabaghian, F., Namdari, A., Akaberi, M., & Emami, S. A. (2025). Phytochemistry and Pharmacology of Alkaloids from Papaver spp.: a Structure–Activity Based Study. Phytochemistry Reviews, 24(1), 585–657. https://doi.org/10.1007/s11101-024-09943-x

Agu, P. C., Yudas, A. F., & Lu, J. (2025). Dual-Target Insight into Drug Discovery from Natural Products as Modulators of GLP-1 and the TXNIP–Thioredoxin Antioxidant System in Metabolic Syndrome. Antioxidants, 14(11), 1364. https://doi.org/10.3390/antiox14111364

Alnuman, H., Abbas, G., & Yousef, A. (2025). Power Distribution and Forecasting Using a Probabilistic and Systematic Data Processing Model for Renewable Resources. Scientific Reports, 15(1), 27370. https://doi.org/10.1038/s41598-025-12888-6

Aly, S. H., Thabet, A. A., Bahgat, D. M., Mahmoud, O. A., Elhawary, E. A., El‐Nashar, H. A. S., & Eldahshan, O. A. (2026). Plant‐Derived Compounds: A Potential Treasure for Development of Analgesic and Antinociceptive Therapeutics. Phytotherapy Research, 40(1), 35–63. https://doi.org/10.1002/ptr.70113

Amin, A., Akhtar, M. S., Khalil, A. A. K., Ali, S., & Zaman, W. (2025). Natural Products in Medicinal Chemistry: Targeting Inflammatory Pathways with Plant-Derived Compounds. Medicinal Chemistry Research, 1. https://doi.org/10.1007/s00044-025-03508-z

Ashrafi, S., Alam, S., Sultana, A., Raj, A., Emon, N. U., Richi, F. T., Sharmin, T., Moon, M., Park, M. N., & Kim, B. (2023). Papaverine: A Miraculous Alkaloid from Opium and Its Multimedicinal Application. Molecules, 28(7), 3149. https://doi.org/10.3390/molecules28073149

Asthana, S. G., & Kumar, A. (2025). Resource Optimization Strategies in Construction Project Management. In Handbook of Construction Project Management (pp. 527–552). Springer Nature Singapore. https://doi.org/10.1007/978-981-96-7631-6_17

Babalola, O. O., Bridget, K., Oyubu, G., Waheed, S. A., Ajiboye, S. A., Fakayode, A. E., Edema, A. A., Chukwuma, U. G., Tiamiyu, R. T., Fakayode, A. J., Adebimpe, H. O., Onyeagba, K. D., Fakunle, C. O., Ottu, P. O., & Gabriel, S. (2025). Integrating Phytochemicals and in Silico Methods for Modern Drug Discovery: a Comprehensive Review. Discover Chemistry, 2(1), 297. https://doi.org/10.1007/s44371-025-00373-y

Chaudhary, D., Patel, S., Gururani, R., Chak, P., Jain, S., Dwivedi, J., & Sharma, S. (2025). A Comprehensive Review on Anti-Inflammatory Plants: A Mechanistic Insight Through Preclinical and Clinical Studies. Inflammopharmacology, 33(5), 2447–2476. https://doi.org/10.1007/s10787-025-01764-4

Chunarkar-Patil, P., Kaleem, M., Mishra, R., Ray, S., Ahmad, A., Verma, D., Bhayye, S., Dubey, R., Singh, H., & Kumar, S. (2024). Anticancer Drug Discovery Based on Natural Products: From Computational Approaches to Clinical Studies. Biomedicines, 12(1), 201. https://doi.org/10.3390/biomedicines12010201

Das, D., & Shafi, S. (2023). Bioactivity-Guided Fractionation and Identification of Bioactive Molecules: A Basic Method in Drug Discovery. Drugs and a Methodological Compendium: From Bench to Bedside, 41–78. https://doi.org/10.1007/978-981-19-7952-1_3

Gangwal, A., & Lavecchia, A. (2025). RETRACTED: Artificial Intelligence in Natural Product Drug Discovery: Current Applications and Future Perspectives. Journal of Medicinal Chemistry, 68(4), 3948–3969. https://doi.org/10.1021/acs.jmedchem.4c01257

Ghani, S., Khan, N., Sable, H., Yao, F., & Shafiq, M. (2025). Computational Techniques for Enhancing PK/PD Modeling and Simulation and ADMET Prediction. In Computational Methods in Medicinal Chemistry, Pharmacology, and Toxicology (pp. 153–174). Elsevier. https://doi.org/10.1016/B978-0-443-33024-7.00001-1

Hu, Z., Wang, C., Wang, C., He, J., Yan, Y., Xu, Z., Yu, Y., Yu, Y., Cheng, H., Liu, L., Tang, M., Zhang, C., Yu, H., Jing, J., & Cheng, W. (2025). The Comparative Efficacy of L-Glutamine, Celecoxib, and Glucosamine Sulfate in Osteoarthritis Management. Scientific Reports, 15(1), 8992. https://doi.org/10.1038/s41598-025-93357-y

Islam, A., Jena, D., Mondal, N. S., Teli, A., Mondal, S., & Gautam, M. K. (2025). In-silico Approaches for Drug Designing Technology: Bridging Discovery and Development. Current Drug Discovery Technologies, 22(5). https://doi.org/10.2174/0115701638326869250207060616

Kolawole, O. R., & Kashfi, K. (2022). NSAIDs and Cancer Resolution: New Paradigms beyond Cyclooxygenase. International Journal of Molecular Sciences, 23(3), 1432. https://doi.org/10.3390/ijms23031432

Korylchuk, N., Pelykh, V., Nemyrovych, Y., Didyk, N., & Martsyniak, S. (2024). Challenges and Benefits of a Multidisciplinary Approach to Treatment in Clinical Medicine. Journal of Pioneering Medical Science, 13(3), 1–9. https://doi.org/10.61091/jpms202413301

Latif, R., & Nawaz, T. (2025). Medicinal Plants and Human Health: A Comprehensive Review of Bioactive Compounds, Therapeutic Effects, and Applications. Phytochemistry Reviews. https://doi.org/10.1007/s11101-025-10194-7

Mukti, B. H. (2024). Ethnobotanical Studies of Medicinal Plants in Borneo. Health Sciences International Journal, 2(2), 154–168. https://doi.org/10.71357/hsij.v2i2.41

Orrù, A., Marchese, G., & Ruiu, S. (2023). Alkaloids in Withania somnifera (L.) Dunal Root Extract Contribute to Its Anti-Inflammatory Activity. Pharmacology, 108(3), 301–307. https://doi.org/10.1159/000527656

Panka, E., Bursalıoğlu, E. O., Kalay, Ş., Doğanay, D., Bozyel, M. E., & Aslan, İ. (2025). Poppy (Papaver somniferum L.) Seed Oil: A Comprehensive Phytochemical and Pharmacological Evaluation for Health and Cosmetic Applications. Current Perspectives on Medicinal and Aromatic Plants (CUPMAP), 8(2), 140–150. https://doi.org/10.38093/cupmap.1780002

Plazas, E., Sierra-Marquez, L., & Olivero-Verbel, J. (2025). Bioactive Molecules from Tropical American Plants: Potential Anti-Inflammatory Agents for Cytokine Storm Management. Molecules, 30(7), 1486. https://doi.org/10.3390/molecules30071486

Predescu, I.-A., Jîjie, A.-R., Pătraşcu, D., Pasc, A.-L.-V., Piroş, E.-L., Trandafirescu, C., Oancea, C., Dehelean, C. A., & Moacă, E.-A. (2025). Unveiling the Complexities of Medications, Substance Abuse, and Plants for Recreational and Narcotic Purposes: An In-Depth Analysis. Pharmacy, 13(1), 7. https://doi.org/10.3390/pharmacy13010007

Srisai, P., Suriyaprom, S., Khacha-Ananda, S., Panya, A., Bäumler, H., & Tragoolpua, Y. (2025). Inhibition of Free Radicals and Inflammation on RAW264.7 Macrophage Cell Line by Arthrospira Platensis Extract. Scientific Reports, 15(1), 43349. https://doi.org/10.1038/s41598-025-27372-4

Yue, M., Muhammad, S., Jiang, S., Maridevaru, M. C., Zhang, Y., Guo, B., & Liu, P. (2026). Demystifying Anti-Inflammatory Therapeutic Strategies Against Pancreatitis and Concomitant Diseases: A 2025 Perspective. Theranostics, 16(6), 3050–3104. https://doi.org/10.7150/thno.127402

Zahoor, I., Bala, R., Wani, S. N., Chauhan, S., Madaan, R., Kumar, R., Hakeem, K. R., & Malik, I. A. (2025). Potential Role of NSAIDs Loaded Nano-Formulations to Treat Inflammatory Diseases. Inflammopharmacology, 33(3), 1189–1207. https://doi.org/10.1007/s10787-025-01644-x

Published
2026-02-06
How to Cite
Poyizar, P., Rahmat, N., Katadi, S., Aprianti, R., & Idrus, I. (2026). Computational and Experimental Evaluation of Alkaloid Compounds from Papaver somniferum as Dual COX-2 and TNF-α Inhibitors. Journal La Medihealtico, 7(1), 124-132. https://doi.org/10.37899/journallamedihealtico.v7i1.3065