Procedure for the quantification of the degradation index of Photovoltaic Generators

  • Proenza Y. Roger Solar Energy Research Center, Reparto Abel Santamaría, Micro 3, Santiago de Cuba, Cuba.
  • Camejo C. José Emilio Solar Energy Research Center, Reparto Abel Santamaría, Micro 3, Santiago de Cuba, Cuba.
  • Ramos H. Rubén Solar Energy Research Center, Reparto Abel Santamaría, Micro 3, Santiago de Cuba, Cuba.
Keywords: Photovoltaic Generator, Quantification of Operational Losses, Photovoltaic Systems

Abstract

A procedure is presented for the quantification of the degradation index of Photovoltaic Generators, based on the quantification of the operational losses inherent in the system, which allows maintaining the nominal operating conditions and by the warranty terms of the photovoltaic generator. A photovoltaic generator connected to the network with a nominal power of 7.5 kWp, installed in the Solar Energy Research Center of Santiago de Cuba, is used to evaluate and validate the procedure. The starting point is the mathematical model of the photovoltaic generator, then the operational losses of the photovoltaic generator are quantified and the mathematical model is adjusted to real conditions, through a polynomial adjustment.  The results obtained show that the photovoltaic generator presents deviations in terms of the nominal power generation, because the operational losses are 7% with respect to the values ​​given by the manufacturer.

References

Chu, S., & Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. nature, 488(7411), 294-303.

Gutiérrez, A. S., Eras, J. J. C., Hens, L., & Vandecasteele, C. (2017). The biomass based electricity generation potential of the province of Cienfuegos, Cuba. Waste and Biomass Valorization, 8(6), 2075-2085.

Gutiérrez, A. S., Eras, J. J. C., Huisingh, D., Vandecasteele, C., & Hens, L. (2018). The current potential of low-carbon economy and biomass-based electricity in Cuba. The case of sugarcane, energy cane and marabu (Dichrostachys cinerea) as biomass sources. Journal of Cleaner Production, 172, 2108-2122.

Lorenzo, E., Martínez F., Muñoz, J., Narvarte, L., (2007). Predicción y ensayo de la producción de la energía FV conectada a la red. Era solar: Energías renovables, ISSN 0212-4157, Nº. 139, págs. 22-31

Meyer, E. L., & Van Dyk, E. E. (2004). Assessing the reliability and degradation of photovoltaic module performance parameters. IEEE Transactions on reliability, 53(1), 83-92.

Reise, C., Wiemken, E., Toggweiler, P., Van Dijk, V., Heinemann, D., & Beyer, H. G. (2020, November). Remote performance check for grid connected PV systems using satellite data. In Sixteenth European Photovoltaic Solar Energy Conference (pp. 2618-2621). Routledge.

Shukla, A. K., Sudhakar, K., & Baredar, P. (2016). Design, simulation and economic analysis of standalone roof top solar PV system in India. Solar Energy, 136, 437-449.

Villegas Berbesi, T. (2012). Aplicación de técnicas robustas para detección y diagnóstico de fallos. Tesis Doctoral. Universidad de Valladolid, 2012. España.

Published
2021-06-11
How to Cite
Roger, P. Y., Emilio, C. C. J., & Rubén, R. H. (2021). Procedure for the quantification of the degradation index of Photovoltaic Generators. Journal La Multiapp, 2(2), 47-53. https://doi.org/10.37899/journallamultiapp.v2i2.354