Fault Diagnostic Methodology for Grid-Connected Photovoltaic Systems

  • Proenza Y. Roger Solar Energy Research Center, Reparto Abel Santamaría, Micro 3, Santiago de Cuba, Cuba
  • Camejo C. José Emilio Solar Energy Research Center, Reparto Abel Santamaría, Micro 3, Santiago de Cuba, Cuba
  • Ramos H. Rubén Solar Energy Research Center, Reparto Abel Santamaría, Micro 3, Santiago de Cuba, Cuba
Keywords: Faults, Diagnosis, Estimation and Accommodation Photovoltaic systems, Monitoring and Supervision

Abstract

This research focuses on the design of a fault diagnosis methodology to contribute to the improvement of efficiency, maintainability and availability indicators of Grid-Connected Photovoltaic Systems. To achieve this, we start from the study of the mathematical model of the photovoltaic generator, then, a procedure is performed to quantify the operational losses of the photovoltaic generator and adjust the mathematical model of this to the real conditions of the system, through a polynomial adjustment. A real system of nominal power 7.5 kWp installed in the Solar Energy Research Center of the province of Santiago de Cuba is used to evaluate the proposed methodology. Based on the results obtained, the proposed approach is validated to demonstrate that it successfully supervises the system. The methodology was able to detect and identify 100% of the simulated failures and the tests carried out had a maximum false alarm rate of 0.22%, evidencing its capacity.

References

Villegas Berbesi, T. (2012). Aplicación de técnicas robustas para detección y diagnóstico de fallos.

Brooks, B. (2011). The bakersfield fire: a lesson in ground-fault protection. SolarPro Mag, 62.

Chouder, A., & Silvestre, S. (2009). Analysis model of mismatch power losses in PV systems. Journal of Solar Energy Engineering, 131(2).

Chouder, A., & Silvestre, S. (2010). Automatic supervision and fault detection of PV systems based on power losses analysis. Energy conversion and Management, 51(10), 1929-1937.

De Soto, W., Klein, S. A., & Beckman, W. A. (2006). Improvement and validation of a model for photovoltaic array performance. Solar energy, 80(1), 78-88.

Duffie, J. A., & Beckman, W. A. (2013). Solar engineering of thermal processes. John Wiley & Sons.

Firth, S. (2006). Raising efficiency in photovoltaic systems: high resolution monitoring and performance analysis (Doctoral dissertation, De Montfort University).

Garoudja, E., Harrou, F., Sun, Y., Kara, K., Chouder, A., & Silvestre, S. (2017). Statistical fault detection in photovoltaic systems. Solar Energy, 150, 485-499.

Houssein, A., Heraud, N., Souleiman, I., & Pellet, G. (2010, December). Monitoring and fault diagnosis of photovoltaic panels. In 2010 IEEE International Energy Conference (pp. 389-394). IEEE.

Lorenzo, E., Martínez, F., Muñoz, J., & Fernández, L. N. (2007). Predicción y ensayo de la producción de energía fotovoltaica conectada a la red: retratos de la conexión fotovoltaica a la red (IX). Era solar: Energías renovables, (139), 22-31.

Mekki, H., Mellit, A., & Salhi, H. (2016). Artificial neural network-based modelling and fault detection of partial shaded photovoltaic modules. Simulation Modelling Practice and Theory, 67, 1-13.

Meyer, E. L., & Van Dyk, E. E. (2004). Assessing the reliability and degradation of photovoltaic module performance parameters. IEEE Transactions on reliability, 53(1), 83-92.

Montgomery, D. C. (2007). Introduction to statistical quality control. John Wiley & Sons.

Munoz, M. A., Alonso-García, M. C., Vela, N., & Chenlo, F. (2011). Early degradation of silicon PV modules and guaranty conditions. Solar energy, 85(9), 2264-2274.

Gutiérrez, A. S., Eras, J. J. C., Hens, L., & Vandecasteele, C. (2017). The biomass based electricity generation potential of the province of Cienfuegos, Cuba. Waste and Biomass Valorization, 8(6), 2075-2085.

Gutiérrez, A. S., Eras, J. J. C., Huisingh, D., Vandecasteele, C., & Hens, L. (2018). The current potential of low-carbon economy and biomass-based electricity in Cuba. The case of sugarcane, energy cane and marabu (Dichrostachys cinerea) as biomass sources. Journal of Cleaner Production, 172, 2108-2122.

Stettler, S., Toggweiler, P., Wiemken, E., Heydenreich, W., De Keizer, A. C., van Sark, W. G. J. H. M., ... & Beyer, H. G. (2005, June). Failure detection routine for grid-connected PV systems as part of the PVSAT-2 project. In Proceedings of the 20th European Photovoltaic Solar Energy Conference & Exhibition, Barcelona, Spain (pp. 2490-2493).

Tian, H., Mancilla-David, F., Ellis, K., Muljadi, E., Jenkins, P., 2012. Detailed Performance Model for Photovoltaic Systems: Preprint. United States. National Renewable Energy Laboratory. 56 páginas.

Vergura, S., Acciani, G., Amoruso, V., & Patrono, G. (2008, June). Inferential statistics for monitoring and fault forecasting of PV plants. In 2008 IEEE International Symposium on Industrial Electronics (pp. 2414-2419). IEEE.

Vergura, S., Acciani, G., Amoruso, V., Patrono, G. E., & Vacca, F. (2008). Descriptive and inferential statistics for supervising and monitoring the operation of PV plants. IEEE Transactions on Industrial Electronics, 56(11), 4456-4464.

Zhao, Y., (2010). Fault analysis in solar photovoltaic arrays. Master’s thesis, Northeastern University. Boston, Massachusetts. http://hdl.handle.net/2047/d20003009

Zhao, Y., Ball, R., Mosesian, J., de Palma, J. F., & Lehman, B. (2014). Graph-based semi-supervised learning for fault detection and classification in solar photovoltaic arrays. IEEE Transactions on Power Electronics, 30(5), 2848-2858.

Zhao, Y., Lehman, B., Ball, R., Mosesian, J., & de Palma, J. F. (2013, March). Outlier detection rules for fault detection in solar photovoltaic arrays. In 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (pp. 2913-2920). IEEE.

Zhao, Y., Yang, L., Lehman, B., de Palma, J. F., Mosesian, J., & Lyons, R. (2012, February). Decision tree-based fault detection and classification in solar photovoltaic arrays. In 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (pp. 93-99). IEEE.

Published
2021-04-30
How to Cite
Roger, P. Y., Emilio, C. C. J., & Rubén, R. H. (2021). Fault Diagnostic Methodology for Grid-Connected Photovoltaic Systems. Journal La Multiapp, 2(2), 10-30. https://doi.org/10.37899/journallamultiapp.v2i2.339