Livestock Population Map Based on Provinces in Indonesia Using the K-Medoids Method
Abstract
Indonesia is one of the countries with a large livestock population. A healthy and stable livestock population can affect the production and availability of livestock products, such as meat, milk, eggs, and skin. FAO's Domestic Animal Diversity - Information System (DAD-IS) data (2020) recorded around 206 large farms, small farms, poultry and pigs. Clustering is a technique for grouping data without unknown class labels. Clustering is used to find data that has similarities. The clustering technique is to determine the initial cluster center. This study is intended to determine the best cluster value using the selected method. The purpose of this study is to create a system that can process and group data. With data obtained from the central statistics agency. This study uses the topic of Livestock Population Map in Indonesia using K-Medoids. The algorithm used in this study is K-Medoids. The K-Medoids method is a variation of the K-Means method to retrieve k data, the number of clusters in a data set with n objects. There are several processes carried out in this study including collecting data, then entering the preprocessing stage, grouping data that has similarities between data. After clustering using K-Medoids, it was found that Cluster 0 had 3 provinces with the highest average population with types of livestock such as Dairy cattle, Beef cattle, Sheep and Goats, Cluster 1 had 29 provinces with the lowest average population, Cluster 2 had 2 provinces with the highest average number for types of livestock such as Buffalo, Horse and Pig.
References
Abbas, S. A., Aslam, A., Rehman, A. U., Abbasi, W. A., Arif, S., & Kazmi, S. Z. H. (2020). K-Means and K-Medoids: Cluster Analysis on Birth Data Collected in City Muzaffarabad, Kashmir. IEEE Access, 8, 151847–151855. https://doi.org/10.1109/ACCESS.2020.3014021
Ainisa, N., Suarna, N., & Prihartono, W. (2024). Analisis Populasi Ayam Ras Pedaging Di Indonesia Dengan Penerapan Data Mining K-Medoids Clustering. JATI (Jurnal Mahasiswa Teknik Informatika), 7(6), 3679–3687. https://doi.org/10.36040/jati.v7i6.8251
Alfiah, F., Almadayani, A., Al Farizi, D., & Widodo, E. (2021). Analisis Clustering K-Medoids Berdasarkan Indikator Kemiskinan di Jawa Timur Tahun 2020. Jurnal Ilmiah Sains, 22(1), 1. https://doi.org/10.35799/jis.v22i1.35911
Alfitra, A., Nurdin, N., & Meiyanti, R. (2025). Comparison of K-Means and K-Medoids Methods in Clustering High Population Density Areas in Bireuen Regency. JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING, 9(1), 292-302. https://doi.org/10.31289/jite.v9i1.15602
Aqilah, N. Y., & Fauzan, A. (2025, January). K-medoids and agglomerative clustering approach with outlier handling in livestock production clusterization (A case study in Brebes district in 2022). In AIP Conference Proceedings (Vol. 3248, No. 1, p. 040011). AIP Publishing LLC. https://doi.org/10.1063/5.0236675
Azzahro, Z., Chyntia, L. F. A. R., Nasar, M., & Widianto, W. (2024, March). Implementation of the k-means clustering method for grouping poverty data: Case studies in Indonesia. In AIP Conference Proceedings (Vol. 2927, No. 1, p. 040026). AIP Publishing LLC. https://doi.org/10.1063/5.0193516
Barik, T. K., & Centeno, V. A. (2020). K-Medoids Clustering of Setting Groups in Directional Overcurrent Relays for Distribution System Protection. 2020 IEEE Kansas Power and Energy Conference, KPEC 2020. https://doi.org/10.1109/KPEC47870.2020.9167531
Baru, M., & Di, T. (2019). Implementasi Metode K-Medoids Clustering Untuk Mengetahui Pola Pemilihan Program Studi. 1(3), 54–69.
BPS Indonesia. (2022). Catalog: 1101001. Statistik Indonesia 2022, 1101001, 790.
Budiman, H., Yuhandra, E., & Faisal, K. A. (2024). Preventive Measure and Action towards Livestock disease: Law on Animal Husbandry and Animal Health. Unifikasi: Jurnal Ilmu Hukum, 11(01), 1-10. https://doi.org/10.25134/unifikasi.v11i01.758
Chen, Z. S., Vaitheeshwari, R., Wu, E. H. K., Lin, Y. D., Hwang, R. H., Lin, P. C., ... & Ali, A. (2024). Clustering apt groups through cyber threat intelligence by weighted similarity measurement. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3469552
Dimara, E., & Perin, C. (2020). What is Interaction for Data Visualization? IEEE Transactions on Visualization and Computer Graphics, 26(1), 119–129. https://doi.org/10.1109/TVCG.2019.2934283
FIRDAUS, M. S. (2022). Segmentasi Mutu Jalan Nasional Menggunakan Metode Clustering K-Medoids di Kabupaten Bandung Barat dan Kota Bandung. Prosiding Sains Nasional Dan Teknologi, 12(1), 431. https://doi.org/10.36499/psnst.v12i1.7173
Hallmen, T., Schiller, D., Vehlen, A., Eberhardt, S., Baur, T., Withanage, D., ... & André, E. (2025). DISCOVER: A Data-driven Interactive System for Comprehensive Observation, Visualization, and ExploRation of Human Behavior. Frontiers in Digital Health, 7, 1638539. https://doi.org/10.3389/fdgth.2025.1638539
Hermawati, A., Jumini, S., Astuti, M., Ismail, F., & Rahim, R. (2020). Unsupervised Data Mining with K-Medoids Method in Mapping Areas of Student and Teacher Ratio in Indonesia. TEM Journal, 9(4), 1614–1618. https://doi.org/10.18421/TEM94-37
Hidayat, M. L., Abdurahman, S. G., Astuti, D. S., Prabawati, R., Anif, S., Hariyatmi, H., & Zannah, F. (2025). Pilot study of digital competency mapping of Indonesian preservice teachers: Rasch model analysis. Indonesian Journal on Learning and Advanced Education (IJOLAE), 100-116.
Jatnika, H., Jamaludin, H., Rahman, A., Ibrahim, I., Sianipar, J. H., Waluyo, A., Maulana Siregar, A. R., & Qomario, Q. (2021). Application of the clustering algorithm to the small and micro industrial companies for mapping regions with k-medoids. Journal of Physics: Conference Series, 1933(1). https://doi.org/10.1088/1742-6596/1933/1/012033
K-, P. M. A., Untuk, M., & Performa, E. (2020). Pelita teknologi. 15(1), 49–55.
Kamel, M., Aleya, S., Almagharbeh, W. T., Aleya, L., & Abdel-Daim, M. M. (2025). The emergence of highly pathogenic avian influenza H5N1 in dairy cattle: implications for public health, animal health, and pandemic preparedness. European Journal of Clinical Microbiology & Infectious Diseases, 1-17. https://doi.org/10.1007/s10096-025-05147-z
Kariyam, Abdurakhman, & Effendie, A. R. (2024, November). Modified fast k-medoids algorithm to guarantee no empty clusters. In AIP Conference Proceedings (Vol. 3201, No. 1, p. 060009). AIP Publishing LLC.
Kenger, O. N., Kenger, Z. D., Ozceylan, E., & Mrugalska, B. (2023). Clustering of Cities Based on Their Smart Performances: A Comparative Approach of Fuzzy C-Means, K-Means, and K-Medoids. IEEE Access, 11(October), 134446–134459. https://doi.org/10.1109/ACCESS.2023.3333753
Khoirunisa, I., Astuti, R., & Suprapti, T. (2023). PENERAPAN ALGORITMA K-MEDOIDS DALAM MENENTUKAN CLUSTER KABUPATEN DAN KOTA BERDASARKAN POPULASI PETERNAKAN DI PROVINSI JAWA BARAT. 7(6).
Khotimah, B. K., Agustina, F., Puspitarini, O. R., Cahyani, A. D., Kustiyahningsih, Y., & Anamisa, D. R. (2024). Hyperparameters and centroid improvements in the K-medoids method for grouping processed beef SMEs. Commun. Math. Biol. Neurosci., 2024, Article-ID.
Lewis, G., Snider, B., Vamvakeridou-Lyroudia, L., Chen, A. S., Djordjević, S., & Savić, D. A. (2023). Web-based GIS for simulation, and visualisation: EPANET and data-rich shapefiles. IOP Conference Series: Earth and Environmental Science, 1136(1). https://doi.org/10.1088/1755-1315/1136/1/012007
Lubis, S. N., Menglikulov, B., Shichiyakh, R., Farrux, Q., Khakimboy Ugli, B. O., Karimbaevna, T. M., ... & Jasur, S. (2024). Temporal and spatial dynamics of bovine spongiform encephalopathy prevalence in Akmola Province, Kazakhstan: Implications for disease management and control. Caspian Journal of Environmental Sciences, 22(2), 431-442. https://doi.org/10.22124/cjes.2024.7734
Matematika, T., & Generasi, M. (2023). SEMINAR NASIONAL JURUSAN MATEMATIKA 2023 (Issue November).
Mustofa, Z. & Iman Saufik Suasana. (2020). Algoritma Clustering K-Medoids Pada E-Government Bidang Information and Communication Technology Dalam Penentuan Status Edgi. Jurnal Teknologi Informasi Dan Komunikasi, 9(1), 1–10. https://doi.org/10.51903/jtikp.v9i1.162
Nurdin, N., Meiyanti, R., & Maulita, M. (2025). Clustering and Mapping of Agricultural Production Based on Geographic Information System Using K-Medoids Algorithm. Journal of Artificial Intelligence and Technology, 5, 116-124. https://doi.org/10.37965/jait.2025.633
Peringkat, A., Sinta, (, Berdasarkan, ), Dirjen, K., Tinggi, P., Kemendikbud, D. T., Didik Madyatmadja, E., Ridho, M. N., Pratama, A. R., Fajri, M., Novianto, L., & Informasi, S. (2022). Infotech: Journal of Technology Information Penerapan Visualisasi Data Terhadap Klasifikasi Tindak Kriminal Di Indonesia. 8(1), 61–68.
Putri, D. (2025). The Impact of Social Inequality on Educational Quality in Indonesia: Challenges and Policy Recommendations. Solo Universal Journal of Islamic Education and Multiculturalism, 3(01), 43-56. https://doi.org/10.61455/sujiem.v3i01.248
Saleh, R. D., Rustiadi, E., Fauzi, A., & Rahma, H. (2025). Mapping Island Village Typology Based on Spatial and Socio-Economic Characteristics in Maluku Province, Indonesia. International Journal of Sustainable Development & Planning, 20(6). https://doi.org/10.18280/ijsdp.200609
Septhya, D., Rahayu, K., Rabbani, S., Fitria, V., Rahmaddeni, R., Irawan, Y., & Hayami, R. (2023). Implementasi Algoritma Decision Tree dan Support Vector Machine untuk Klasifikasi Penyakit Kanker Paru: Implementation of Decision Tree Algorithm and Support Vector Machine for Lung Cancer Classification. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 3(1), 15–19. https://doi.org/10.57152/malcom.v3i1.591
Suharno, B. (2020). Prospek Peternakan Di Era Normal Baru Pasca Pandemi Covid-19 (Sudut Pandang Media). In Prosiding Seminar Teknologi dan Agribisnis Peternakan. http://jnp.fapet.unsoed.ac.id/index.php/psv/article/view/467
Syahfitri, N., Budianita, E., Nazir, A., & Afrianty, I. (2023). Pengelompokan Produk Berdasarkan Data Persediaan Barang Menggunakan Metode Elbow dan K-Medoid. KLIK: Kajian Ilmiah Informatika Dan Komputer, 4(3), 1668–1675. https://doi.org/10.30865/klik.v4i3.1525
Tajbar, S., Tajbar, A., Pashaie, Z., Khorshiddoust, A. M., & Rafiq, L. (2024). Application of hierarchical cluster analysis to spatiotemporal variability of monthly precipitation over Khyber Pakhtunkhwa, Pakistan. Acta Geophysica, 72(2), 1159-1174. https://doi.org/10.1007/s11600-023-01161-x
Zhang, H., & Peng, Y. (2024). Image clustering: An unsupervised approach to categorize visual data in social science research. Sociological Methods & Research, 53(3), 1534-1587. https://doi.org/10.1177/00491241221082603