Simulation of Dungdo Reservoir Water Distribution for Irrigation and Raw Water
Abstract
Small reservoirs are structures that function to accommodate excess water during the rainy season so that it can be used during the dry season. Dungdo Reservoir is expected to help meet the needs of irrigation water and raw water for livestock in the surrounding community. Water distribution simulation aims to optimize water availability efficiently and evenly. The methodology used includes water balance analysis based on rainfall data, evapotranspiration, inflow, and changes in reservoir capacity. Irrigation water requirements are calculated based on the crop coefficient (Kc), while raw water requirements are calculated based on the number of livestock. Based on the simulation results with the existing planting pattern with an irrigation area of 171.60 Ha, it shows that the average water requirement is 279605.66 m3/15 days, while the reservoir's capacity to provide water is 53135.20 m3/15 days. The simulation results show that Dungdo Reservoir has not been able to optimally meet irrigation water and raw water needs.
References
Alotaibi, B. A., Baig, M. B., Najim, M. M., Shah, A. A., & Alamri, Y. A. (2023). Water scarcity management to ensure food scarcity through sustainable water resources management in Saudi Arabia. Sustainability, 15(13), 10648. https://doi.org/10.3390/su151310648
Bastola, S., Shakya, B., Seong, Y., Kim, B., & Jung, Y. (2024). AHP and FAHP-based multi-criteria analysis for suitable dam location analysis: a case study of the Bagmati Basin, Nepal. Stochastic Environmental Research and Risk Assessment, 38(11), 4209-4225. http://dx.doi.org/10.1007/s00477-024-02799-9
Belhassan, K. (2021). Water scarcity management. In Water safety, security and sustainability: Threat detection and mitigation (pp. 443-462). Cham: Springer International Publishing. http://dx.doi.org/10.1007/978-3-030-76008-3_19
Chow, V. Te, Maidment, D.R. and Mays, L.W. (1988) Applied Hydrology, Applied Hydrology. New York: McGraw Hill.
Dimitriadou, S., & Nikolakopoulos, K. G. (2021). Evapotranspiration trends and interactions in light of the anthropogenic footprint and the climate crisis: A review. Hydrology, 8(4), 163. https://doi.org/10.3390/hydrology8040163
Fu, J., Jian, Y., Wang, X., Li, L., Ciais, P., Zscheischler, J., ... & Zhou, F. (2023). Extreme rainfall reduces one-twelfth of China’s rice yield over the last two decades. Nature Food, 4(5), 416-426. https://doi.org/10.1038/s43016-023-00753-6
Gavrilescu, M. (2021). Water, soil, and plants interactions in a threatened environment. Water, 13(19), 2746. https://doi.org/10.3390/w13192746
Gayen, D., Chatterjee, R., & Roy, S. (2024). A review on environmental impacts of renewable energy for sustainable development. International Journal of Environmental Science and Technology, 21(5), 5285-5310. http://dx.doi.org/10.1007/s13762-023-05380-z
Gleick, P. H. (1998). Water in crisis: paths to sustainable water use. Ecological applications, 8(3), 571-579.
Hadisusanto, N. (2011) Aplikasi Hidrologi. Malang: Jogja Mediautama.
Han, Q., Wang, T., Wang, L., Smettem, K., Mai, M., & Chen, X. (2021). Comparison of nighttime with daytime evapotranspiration responses to environmental controls across temporal scales along a climate gradient. Water Resources Research, 57(7), e2021WR029638. https://doi.org/10.1029/2021WR029638
Harto, S.B.R. (1993) Analisis Hidrologi. Jakarta: PT Gramedia Pustaka Utama.
Hejazi, M., Santos Da Silva, S. R., Miralles-Wilhelm, F., Kim, S., Kyle, P., Liu, Y., ... & Clarke, L. (2023). Impacts of water scarcity on agricultural production and electricity generation in the Middle East and North Africa. Frontiers in Environmental Science, 11, 1082930. https://doi.org/10.3389/fenvs.2023.1082930
Hussain, T., Gollany, H. T., Hussain, N., Ahmed, M., Tahir, M., & Duangpan, S. (2022). Synchronizing nitrogen fertilization and planting date to improve resource use efficiency, productivity, and profitability of upland rice. Frontiers in Plant Science, 13, 895811. https://doi.org/10.3389/fpls.2022.895811
Ingrao, C., Strippoli, R., Lagioia, G., & Huisingh, D. (2023). Water scarcity in agriculture: An overview of causes, impacts and approaches for reducing the risks. Heliyon, 9(8).
Jackson, R. B., Carpenter, S. R., Dahm, C. N., McKnight, D. M., Naiman, R. J., Postel, S. L., & Running, S. W. (2001). Water in a changing world. Ecological applications, 11(4), 1027-1045. http://dx.doi.org/10.2307/3061010
Jiao, Y., Zhu, G., Meng, G., Lu, S., Qiu, D., Lin, X., ... & Sun, N. (2023). Estimating non-productive water loss in irrigated farmland in arid oasis regions: Based on stable isotope data. Agricultural Water Management, 289, 108515. https://doi.org/10.1016/j.agwat.2023.108515
Khan, F. (2022). Water availability and response of Tarbela Reservoir under the changing climate in the Upper Indus Basin, Pakistan. Scientific reports, 12(1), 15865. http://dx.doi.org/10.1038/s41598-022-20159-x
Koop, S. H., & van Leeuwen, C. J. (2015). Assessment of the sustainability of water resources management: a critical review of the city blueprint approach. Water Resources Management, 29(15), 5649-5670. https://link.springer.com/article/10.1007/s11269-015-1139-z
Loucks, D. P., & Van Beek, E. (2017). Water resources planning and management: An overview. Water resource systems planning and management: an introduction to methods, models, and applications, 1-49. http://dx.doi.org/10.1007/978-3-319-44234-1
Mishra, B. K., Kumar, P., Saraswat, C., Chakraborty, S., & Gautam, A. (2021). Water security in a changing environment: Concept, challenges and solutions. Water, 13(4), 490. https://doi.org/10.3390/w13040490
Mishra, R. K. (2023). Fresh water availability and its global challenge. British Journal of Multidisciplinary and Advanced Studies, 4(3), 1-78. https://doi.org/10.37745/bjmas.2022.0208
Molle, F. & Berkoff, J. (2010) Irrigation Water Pricing: The Gap Between Theory and Practice. CABI Publishing.
Nassar, A., Torres-Rua, A., Kustas, W., Alfieri, J., Hipps, L., Prueger, J., ... & Dokoozlian, N. (2021). Assessing daily evapotranspiration methodologies from one-time-of-day sUAS and EC information in the GRAPEX project. Remote Sensing, 13(15), 2887. https://doi.org/10.3390/rs13152887
Salem, H. S., Pudza, M. Y., & Yihdego, Y. (2022). Water strategies and water–food Nexus: challenges and opportunities towards sustainable development in various regions of the World. Sustainable Water Resources Management, 8(4), 114. http://dx.doi.org/10.1007/s40899-022-00676-3
Singh, A. (2014) ‘Simulation-optimization modeling for conjunctive water use management’, Agricultural Water Management, 141, pp. 23–29. Available at: https://doi.org/10.1016/j.agwat.2014.04.003.
Sivakumar, B. (2011). Global climate change and its impacts on water resources planning and management: assessment and challenges. Stochastic Environmental Research and Risk Assessment, 25(4), 583-600. http://dx.doi.org/10.1007/s00477-010-0423-y
Sosrodarsono, S. & Takeda, K. (1987) Hidrologi Untuk Pengairan. Jakarta: Pradnya Paramita.
Srivastav, A. L., Dhyani, R., Ranjan, M., Madhav, S., & Sillanpää, M. (2021). Climate-resilient strategies for sustainable management of water resources and agriculture. Environmental Science and Pollution Research, 28(31), 41576-41595. https://doi.org/10.1007/s11356-021-14332-4
Subramanya, K. (2008) Engineering Hydrology. New Delhi: McGraw Hill. Available at: https://doi.org/10.1177/0011392198046001001.
Suna, T., Kumari, A., Paramaguru, P. K., & Kushwaha, N. L. (2023). Enhancing agricultural water productivity using deficit irrigation practices in water-scarce regions. In Enhancing resilience of dryland agriculture under changing climate: interdisciplinary and convergence approaches (pp. 177-206). Singapore: Springer Nature Singapore. http://dx.doi.org/10.1007/978-981-19-9159-2_11
Tork, H., Javadi, S., & Shahdany, S. M. H. (2021). A new framework of a multi-criteria decision making for agriculture water distribution system. Journal of Cleaner Production, 306, 127178. http://dx.doi.org/10.1016/j.jclepro.2021.127178
Triatmodjo, B. (2008) Hidrologi Terapan. 1st edn. Yogyakarta: Beta Offset.
Wineland, S. M., Bașağaoğlu, H., Fleming, J., Friedman, J., Garza‐Diaz, L., Kellogg, W., ... & Wootten, A. M. (2022). The environmental flows implementation challenge: Insights and recommendations across water‐limited systems. Wiley Interdisciplinary Reviews: Water, 9(1), e1565. http://dx.doi.org/10.1002/wat2.1565
Copyright (c) 2025 Journal La Multiapp

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



