Simultaneous Caffeine Extraction and Enzymatic Inactivation through Microwave Thermobiochemical Process
Abstract
Indonesia is known as one of the countries producing tea with high bioactive compounds such as caffeine, phenol, and catechin. This study evaluated the effectiveness of microwave-based thermobiochemical methods to extract the three compounds while simultaneously inactivating enzymes. The extraction process was designed using the Factorial Design method, involving variations in the feed:solvent ratio (1:22 and 1:32), temperature (110 °C and 130 °C), and time (10, 20, and 30 minutes). The results showed that catechin had the highest effect of 5.85 with a probability of 35.87%, followed by phenol (5.18; 59.68%) and caffeine (4.51; 54.47%). The normal probability plot graph indicated a distribution of effects approaching normal with R² of 0.9458 (catechin), 0.9395 (phenol), and 0.7946 (caffeine), respectively. Meanwhile, the optimization graph shows a perfect linear relationship (R² = 1), with optimal levels of 17.18 mg/L (catechin), 9.36 mg/L (phenol), and 9.77 mg/L (caffeine), respectively. Thus, this method is proven to be efficient and has the potential to be further developed for sustainable natural material processing industry applications. The variables were designed using the Factorial Design method.
References
Abubakar, A. R., & Haque, M. (2020). Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. Journal of Pharmacy and Bioallied Sciences, 12(1), 1-10. https://doi.org/10.4103/jpbs.jpbs_175_19
Ahmed, S., & Stepp, J. R. (2013). Green tea: The plants, processing, manufacturing and production. Tea in health and disease prevention, 2, 19-31.
Ashurst, P. R. (2016). Chemistry and technology of soft drinks and fruit juices. John Wiley & Sons.
Bronner, W. E., & Beecher, G. R. (1998). Method for determining the content of catechins in tea infusions by high-performance liquid chromatography. Journal of Chromatography A, 805(1-2), 137-142. https://doi.org/10.1016/s0021-9673(98)00040-5
Cioanca, O., Lungu, I. I., Mita-Baciu, I., Robu, S., Burlec, A. F., Hancianu, M., & Crivoi, F. (2024). Extraction and purification of catechins from tea leaves: an overview of methods, advantages, and disadvantages. Separations, 11(6), 171. https://doi.org/10.3390/separations11060171
Cioanca, O., Lungu, I. I., Mita-Baciu, I., Robu, S., Burlec, A. F., Hancianu, M., & Crivoi, F. (2024). Extraction and purification of catechins from tea leaves: an overview of methods, advantages, and disadvantages. Separations, 11(6), 171. https://doi.org/10.3390/separations11060171
Corbo, M. R., Bevilacqua, A., Petruzzi, L., Casanova, F. P., & Sinigaglia, M. (2014). Functional beverages: the emerging side of functional foods: commercial trends, research, and health implications. Comprehensive reviews in food science and food safety, 13(6), 1192-1206. https://doi.org/10.1111/1541-4337.12109
Fujioka, K., Salaheldin, T. A., Godugu, K., Meyers, H. V., & Mousa, S. A. (2022). Edible green solvent for optimized catechins extraction from green tea leaves: Anti-hypercholesterolemia. Journal of Pharmacy and Pharmacology Research, 6(2). https://doi.org/10.26502/fjppr.053
Gil-Martín, E., Forbes-Hernández, T., Romero, A., Cianciosi, D., Giampieri, F., & Battino, M. (2022). Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chemistry, 378, 131918. https://doi.org/10.1016/j.foodchem.2021.131918
Gupta, A., Naraniwal, M., & Kothari, V. (2012). Modern extraction methods for preparation of bioactive plant extracts. International journal of applied and natural sciences, 1(1), 8-26.
Joana Gil‐Chávez, G., Villa, J. A., Fernando Ayala‐Zavala, J., Basilio Heredia, J., Sepulveda, D., Yahia, E. M., & González‐Aguilar, G. A. (2013). Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: An overview. Comprehensive reviews in food science and food safety, 12(1), 5-23. https://doi.org/10.1111/1541-4337.12005
Knief, U., & Forstmeier, W. (2021). Violating the normality assumption may be the lesser of two evils. Behavior research methods, 53(6), 2576-2590. https://doi.org/10.3758/s13428-021-01587-5
Lestari, Y. P., & Amaria, A. (2023). Effect Of Ammonia-Ethanol Mole Ratio On The Silica Nanoparticles Synthesized For Rhodamine B Dyes Adsorption. Jurnal Kimia Riset, 8(1). https://doi.org/10.20473/jkr.v8i1.44400
Li, N., Taylor, L. S., & Mauer, L. J. (2011). Degradation kinetics of catechins in green tea powder: effects of temperature and relative humidity. Journal of Agricultural and Food Chemistry, 59(11), 6082-6090. https://doi.org/10.1021/jf200203n
Lopez-Avila, V. (2000). Applications of microwave-assisted extraction in environmental analysis. In Techniques and Instrumentation in Analytical Chemistry (Vol. 21, pp. 115-153). Elsevier. https://doi.org/10.1016/S0167-9244(00)80009-8
Mastur, A. I., Karuniawan, A., & Ernah, E. (2023). The harvesting process and recent advances on health benefits of white tea. Kultivasi, 22(3), 303-310. https://doi.org/10.24198/kultivasi.v22i3.50075
Memon, M. M., & Idress, M. (2024). Optimization of Caffeine Extraction from Various Tea Types Using Dichloromethane as an Organic Solvent. Engineering Proceedings, 67(1), 81. https://doi.org/10.3390/engproc2024067081
Michel, T., Destandau, E., Fougère, L., & Elfakir, C. (2013). Erratum to: New" hyphenated" CPC-HPLC-DAD-MS strategy for simultaneous isolation, analysis and identification of phytochemicals: application to xanthones from Garcinia mangostana. Analytical and Bioanalytical Chemistry, 405(4), 1431. https://doi.org/10.1007/s00216-012-6430-8
Novianty, I., Sholihah, W., Mindara, G. P., Nurulhaq, M. I., Faricha, A., Sinambela, R., ... & Nanda, M. A. (2023). Shannon entropy on near-infrared spectroscopy for nondestructively determining water content in oil palm. International Journal of Electrical and Computer Engineering (IJECE), 13(5), 5397-5405.
Nugraheni, P. W., & Mahdi, C. (2022). Kidney Evaluation in Hyperuricemia Rats Treated with Green Tea Leaves (Camellia sinensis L.) Extract. Biology, Medicine, & Natural Product Chemistry, 11(1), 17-26. https://doi.org/10.14421/biomedich.2022.111.17-26
Saleem, M., Ullah, M., Kamreen, H., Hajri, A. K., Alanazi, A. N., Alraih, A. M., ... & Khan, D. (2024). Microwave-assisted extraction of green tea catechins and antioxidant activity of tea extracts: The role of solvents, microwave power, and contact time. Microchemical Journal, 203, 110906.
Sökmen, M., Demir, E., & Alomar, S. Y. (2018). Optimization of sequential supercritical fluid extraction (SFE) of caffeine and catechins from green tea. The Journal of Supercritical Fluids, 133, 171-176. http://dx.doi.org/10.1016/j.supflu.2017.09.027
Sundari, D., Nuratmi, B., & Winarno, M. W. (2009). Toksisitas Akut (LD50) dan Uji Gelagat Ekstrak Daun Teh Hijau (Camellia Sinensis (Linn.) Kunze) Pada Mencit. Media Penelitian dan Pengembangan Kesehatan, 19(4), 153148. https://doi.org/10.22435/mpk.v19i4%20Des.774.
Wahyuningsih, R. (2019). Identifikasi Adanya Bakteri Escherichia Coli Pada Minuman Es Teh Yang Dijual Disekitar Stikes Bcm Pangkalan Bun Wilayah Kotawaringin Barat. Jurnal Kesehatan Borneo Cendekia, 3(1), 93-106.
Zeniusa, P., & Ramadhian, M. R. (2017). Efektifitas ekstrak etanol teh hijau dalam menghambat pertumbuhan Escherichia coli. medical journal of Lampung university, 7(1), 26-30.
Copyright (c) 2025 Journal La Multiapp

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.