Hybrid Feature Selection Using Secretary Bird Optimization and Decision Tree Classifier

  • Qabas Abdal Zahraa Jabbar Department of Computer Science, College of Science, Mustansiriyah University, Baghdad, Iraq
Keywords: Secretary Bird Optimization, (SBO); Decision Tree, Ranking; Metaheuristic, Algorithms; Interpretable, Machine Learning

Abstract

Feature selection is one of the most crucial concepts of learning when constructing a machine learning algorithm. This paper proposes a new technique of using a blend of Secretary Bird Optimization (SBO) and Decision Tree for feature selection. SBO, with the consideration of hunting strategy of called secretary bird, can successfully search the space and find feature subsets. The first proposed framework involves identifying the relevant features by applying SBO then secondly deciding on a ranking of the features by using a decision tree model classifier. Evaluation is based on the most famous Iris dataset with the application of the 5-fold cross-validation to increase the reliability of the results. It is shown that the SBO-based approach succeeds in both objectives, and the average classification accuracy is equal to 0.9550 ± 0.0316, while the baseline selection methods have higher values of loss. This result has unveiled a theoretical and practical potential for future works that seek to combine metaheuristic optimization with decision trees and interpretability of selected features and machine learning models.

References

Abualigah, L. (2025). Particle swarm optimization: Advances, applications, and experimental insights. Computers, Materials & Continua, 82(2). https://10.32604/cmc.2025.060765

Ahmed, N. T., Mohialden, Y. M., & Abdulrazzaq, D. R. (2018). A new method for self-adaptation of genetic algorithms operators. International Journal of Civil Engineering and Technology, 9(11), 1279–1285.

Aljaidi, M., Jangir, P., Agrawal, S. P., Pandya, S. B., Parmar, A., Anbarkhan, S. H., & Abualigah, L. (2025). A quasi affine transformation evolution algorithm with evolution matrix selection operation for parameter estimation of proton exchange membrane fuel cells. Scientific Reports, 15(1), 1662. https://doi.org/10.1038/s41598-024-83538-6

Allgaier, J., & Pryss, R. (2024). Cross-validation visualized: A narrative guide to advanced methods. Machine Learning and Knowledge Extraction, 6(2), 1378–1388. https://doi.org/10.3390/make6020065

Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16–28. https://doi.org/10.1016/j.compeleceng.2013.11.024

Chen, F., Ye, S., Wang, J., & Luo, J. (2025). Multi-strategy improved binary secretarial bird optimization algorithm for feature selection. Mathematics, 13(4), 668. https://doi.org/10.3390/math13040668

Chen, P., Xiong, H., Cao, J., Cui, M., Hou, J., & Guo, Z. (2025). Predicting postoperative adhesive small bowel obstruction in infants under 3 months with intestinal malrotation: A random forest approach. Jornal de Pediatria. https://doi.org/10.1016/j.jped.2024.11.011

Fu, Y., Liu, D., Chen, J., & He, L. (2024). Secretary bird optimization algorithm: A new metaheuristic for solving global optimization problems. Artificial Intelligence Review, 57(5), 123. https://doi.org/10.1007/s10462-024-10729-y

Ghosh, S., Baranowski, E. S., Biehl, M., Arlt, W., Tino, P., & Bunte, K. (2025). Interpretable modeling and visualization of biomedical data. Neurocomputing, 626. https://doi.org/10.1016/j.neucom.2025.129405

Ghosh, S., Frase, H., Williams, A., Luger, S., Röttger, P., Barez, F., ... & Vanschoren, J. (2025). Ailuminate: Introducing v1.0 of the AI risk and reliability benchmark from MLCommons. arXiv preprint arXiv:2503.05731. https://doi.org/10.48550/arXiv.2503.05731

Grandhi, A., & Singh, S. K. (2025). Interrelated dynamic biased feature selection and classification model using enhanced gorilla troops optimizer for intrusion detection. Alexandria Engineering Journal, 114, 312–330. https://doi.org/10.1016/j.aej.2024.10.100

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3(Mar), 1157–1182.

Hariyani, G. (2025). Enhancing sustainable AI with efficient machine learning models: An iris classification perspective. Vidhyayana-An International Multidisciplinary Peer-Reviewed E-Journal, 10(si4).

Hrizi, O., Gasmi, K., Alyami, A., Alkhalil, A., Alrashdi, I., Alqazzaz, A., ... & Yahyaoui, S. (2025). Federated and ensemble learning framework with optimized feature selection for heart disease detection. AIMS Mathematics, 10(3), 7290–7318. https://doi.org/10.3934/math.2025334

Huang, P., Yang, J., Zhao, D., Ran, T., Luo, Y., Yang, D., ... & Chen, C. (2025). Machine learning–based prediction of early complications following surgery for intestinal obstruction: Multicenter retrospective study. Journal of Medical Internet Research, 27, e68354. https://doi.org/10.2196/68354

Huang, Y., Chen, G., Gou, J., Fan, Z., & Liao, Y. (2025). A hybrid feature selection and aggregation strategy-based stacking ensemble technique for network intrusion detection. Applied Intelligence, 55(1), 28. https://doi.org/10.1007/s10489-024-06015-7

Jagdale, V. V., Khanaj, T. P., Merat, R. R., Patil, Y. A., & Tamkhade, J. (2024). Secretary bird optimization algorithm. Journal of Novel Research and Innovative Development, 2(12). https://tijer.org/jnrid/papers/JNRID2412003.pdf

Jiang, X., Zheng, C., Zhuo, Y., Kong, X., Ge, Z., Song, Z., & Xie, M. (2025). Advancing industrial data augmentation in AIGC era: From foundations to frontier applications. IEEE Transactions on Instrumentation and Measurement. https://doi.org/10.1109/TIM.2025.3572162

Johnson, J., Rajuroy, A., & Liang, W. (2025). Hybridizing mixing genetic algorithm with parallel metaheuristic ensembles for enhanced traveling salesman problem solving.

Jović, A., Brkić, K., & Bogunović, N. (2015, May). A review of feature selection methods with applications. In 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 1200–1205). IEEE.

Kernbach, J. M., & Staartjes, V. E. (2020). Machine learning-based clinical prediction modeling—a practical guide for clinicians. arXiv preprint arXiv:2006.15069. https://doi.org/10.48550/arXiv.2006.15069

Khan, Z. A., Ullah, F. U. M., Yar, H., Ullah, W., Khan, N., Kim, M. J., & Baik, S. W. (2025). Optimized cross-module attention network and medium-scale dataset for effective fire detection. Pattern Recognition, 161, 111273. https://doi.org/10.1016/j.patcog.2024.111273

Kohavi, R. (1995, August). A study of cross-validation and bootstrap for accuracy estimation and model selection. In IJCAI (Vol. 14, No. 2, pp. 1137–1145).

Lind, E. (2025). A comparison of dimensionality reduction methods’ impact on model accuracy: Mitigating the curse of dimensionality in estimating retail customers' share of wallet.

Mallidi, S. K. R., & Ramisetty, R. R. (2025). Bowerbird courtship-inspired feature selection for efficient high-dimensional data analysis using a novel meta-heuristic. Discover Computing, 28(1), 6. https://doi.org/10.1007/s10791-025-09497-2

Mohammed, M. H., Kadhim, M. N., Al-Shammary, D., & Ibaida, A. (2025). EEG-based emotion detection using Roberts similarity and PSO feature selection. IEEE Access.

Mohialden, Y. M., & Hussien, N. M. (2025). A novel implementation of the secretary bird optimization algorithm for solving quadratic equations. In National Conference on New Trends in Information and Communications Technology Applications (pp. 207–221). Springer. http://dx.doi.org/10.1007/978-3-031-87076-7_13

Molnar, C. (2020). Interpretable machine learning. Lulu.com.

Nematzadeh, H., Mani, J., Nematzadeh, Z., Akbari, E., & Mohamad, R. (2025). Distance-based mutual congestion feature selection with genetic algorithm for high-dimensional medical datasets. Neural Computing and Applications, 1–16. https://doi.org/10.48550/arXiv.2407.15611

Qin, S., Liu, J., Bai, X., & Hu, G. (2024). A multi-strategy improvement secretary bird optimization algorithm for engineering optimization problems. Biomimetics, 9(8), 478. https://doi.org/10.3390/biomimetics9080478

Rezaie, F., Panahi, M., Kalantari, Z., Choi, M., & Kim, H. (2025). Enhancing detection of inundated areas using novel hybrid PolSAR-metaheuristic-deep learning models. Available at SSRN 5248912. https://dx.doi.org/10.2139/ssrn.5248912

Rostami, M., Berahmand, K., Nasiri, E., & Forouzandeh, S. (2021). Review of swarm intelligence-based feature selection methods. Engineering Applications of Artificial Intelligence, 100, 104210. https://doi.org/10.1016/j.engappai.2021.104210

Sadeghian, Z., Akbari, E., Nematzadeh, H., & Motameni, H. (2025). A review of feature selection methods based on meta-heuristic algorithms. Journal of Experimental & Theoretical Artificial Intelligence, 37(1), 1–51. https://doi.org/10.1080/0952813X.2023.2183267

Sanches, H. E., Possebom, A. T., & Aylon, L. B. R. (2025, April). AREF-Argumentative rule-based explanatory framework. In 2025 IEEE International Systems Conference (SysCon) (pp. 1–8). IEEE.

Sanjalawe, Y., Al-E’mari, S., Abualhaj, M., Makhadmeh, S. N., Alsharaiah, M. A., & Hijazi, D. H. (2025). Recent advances in secretary bird optimization algorithm, its variants and applications. Evolutionary Intelligence, 18(3), 1–32. http://dx.doi.org/10.1007/s12065-025-01054-6

Sanjaya, W. (2016). Strategi pembelajaran berorientasi standar proses pendidikan. Kencana.

Selvaraj, P., & Sivaprakash, S. (2025). Feature extraction and feature selection in medical images. In Intelligent Computing Techniques in Biomedical Imaging (pp. 83–97). Academic Press.

Settelmeier, J., Goetze, S., Boshart, J., Fu, J., Khoo, A., Steiner, S. N., ... & Wollscheid, B. (2025). MultiOmicsAgent: Guided extreme gradient-boosted decision trees-based approaches for biomarker-candidate discovery in multiomics data. Journal of Proteome Research. https://doi.org/10.1021/acs.jproteome.4c01066

Sharma, A., Kumar, D., & Gupta, G. (2025). Enhanced iris recognition with histogram cut selection and genetic algorithms for robust classification. Procedia Computer Science, 258, 2846–2859.

Shin, T. (2023). Understanding feature importance in machine learning. Accessed on, 26, 2024.

Shirali, M., Hatamiafkoueieh, J., Razoumny, Y., & Olegovich, D. D. (2025). Accuracy enhancement in land subsidence prediction using LightGBM and metaheuristic optimization. Earth Science Informatics, 18(3), 435. http://dx.doi.org/10.1007/s12145-025-01929-3

Sony, R., Farmanifard, P., Alzwairy, H., Shukla, N., & Ross, A. (2025). Benchmarking foundation models for zero-shot biometric tasks. arXiv preprint arXiv:2505.24214. https://doi.org/10.48550/arXiv.2505.24214

Tared, S., Roubehie Fissa, M., Khaouane, L., & Hanini, S. (2025). Prediction of diabetes using hybrid support vector machines with artificial bee colony. International Journal of Diabetes in Developing Countries, 1–16. http://dx.doi.org/10.1007/s13410-025-01478-x

Wang, L., Sheng, J., Zhang, Q., Song, Y., Zhang, Q., Wang, B., & Zhang, R. (2025). Diagnosis of Alzheimer’s disease using FusionNet with improved secretary bird optimization algorithm for optimal MK-SVM based on imaging genetic data. Cerebral Cortex, bhae498. https://doi.org/10.1093/cercor/bhae498

Xue, B., Zhang, M., Browne, W. N., & Yao, X. (2015). A survey on evolutionary computation approaches to feature selection. IEEE Transactions on Evolutionary Computation, 20(4), 606–626. https://doi.org/10.1109/TEVC.2015.2504420

Zhu, C., Wang, Z., Peng, Y., & Xiao, W. (2025). An improved red-billed blue magpie feature selection algorithm for medical data processing. PLoS ONE, 20(5), e0324866. https://doi.org/10.1371/journal.pone.0324866

Published
2025-07-10
How to Cite
Jabbar, Q. A. Z. (2025). Hybrid Feature Selection Using Secretary Bird Optimization and Decision Tree Classifier. Journal La Multiapp, 6(3), 631-645. https://doi.org/10.37899/journallamultiapp.v6i3.2196