Experimental Study on the Utilisation of Independent Wire Fibre Core Steel Wire Rope Braces to Enhance the Stability of a 2d Concrete Portal against Lateral Forces

  • Ahmad Zarkasi Civil Engineering Study Programme, Faculty of Engineering, Universitas Muhammadiyah Mataram
  • Adryan Fitrayudha Civil Engineering Study Programme, Faculty of Engineering, Universitas Muhammadiyah Mataram
  • Nurul Hidayati Civil Engineering Study Programme, Faculty of Engineering, Universitas Muhammadiyah Mataram
  • Yuliana Santika Civil Engineering Student, Faculty of Engineering, Universitas Muhammadiyah
  • Khendy Marsa D.P Civil Engineering Student, Faculty of Engineering, Universitas Muhammadiyah
Keywords: Structural Stability, IWFC Braces, Concrete Portals, Load Capacity

Abstract

Structural stability in construction, especially in buildings exposed to lateral forces due to earthquakes, is very important to consider. This research aims to explore the effectiveness of using Independent Wire Fibre Core (IWFC) steel wire rope braces in strengthening two-dimensional (2D) concrete portals. The method used is a series of laboratory tests to measure the performance of concrete portals equipped with IWFC braces. Concrete portals with dimensions of 1.00 m in the width direction and 1.50 m in the height direction were tested with lateral loading to simulate the effects of earthquakes. The test results showed that the use of IWFC braces increased the load resistance capacity of the portal by 16.13%, from 14.00 kN to 26.13 kN, and reduced the deviation by 30.43%, from 2.30 mm to 1.68 mm. In addition, the analysis showed an increase in the response modification factor (R) from 4.69 to 5.03, while the Cd value of the non-braced portal was 3.29 using braces was 3.02 and the Ω0 value of the non-braced portal was 3.50 and after using braces was 2.84. These findings open up opportunities for the application of better structural strengthening techniques in order to improve the safety and stability of buildings in earthquake-prone areas.

References

Ali, Z. Z. H. (2007). Sustainable shelters for post disaster reconstruction: an integrated approach for reconstruction after the South Asia earthquake (Doctoral dissertation, Massachusetts Institute of Technology).

Atlaoui, D. (2024). Structural bracing systems (Doctoral dissertation, Université Mouloud Mammeri).

Badan Standarisasi Nasional. (2008). SNI 03-0076-2008 : Tali Kawat Baja. BSN.

Badan Standarisasi Nasional. (2019a). SNI 03-1726-2019: Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Nongedung. In BSN.

Badan Standarisasi Nasional. (2019b). SNI 03-2847-2019: Persyaratan Beton Struktural Untuk Bangunan Gedung dan Penjelasan. In BSN.

Behnood, A., Behnood, V., Gharehveran, M. M., & Alyamac, K. E. (2017). Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm. Construction and Building Materials, 142, 199-207. https://doi.org/10.1016/j.conbuildmat.2017.03.061

Bogdanov, A. A., Panin, S. V., & Kosmachev, P. V. (2023). Fatigue damage assessment and lifetime prediction of short fiber reinforced polymer composites—a review. Journal of Composites Science, 7(12), 484. https://doi.org/10.3390/jcs7120484

Dipohusodo, I. (1993). Struktur Beton Bertulang berdasarkan SKSNI T 15-1991-03. Departemen Pekerjaan Umum.

FEMA P-451. (2006). National Earthquake Hazards Reduction Program (NEHRP) Recommended Provisions Design Example. A council of the National Institute of Building Sciences.

FEMA P-750. (2009). National Earthquake Hazards Reduction Program (NEHRP) Recommended Hazard Provisions For New Buildings And Other Structures. A council of the National Institute of Building Sciences.

Gupta, S., & Sihag, P. (2022). Prediction of the compressive strength of concrete using various predictive modeling techniques. Neural Computing and Applications, 34(8), 6535-6545. https://link.springer.com/article/10.1007%2Fs00521-021-06820-y

Hamada, H., Alattar, A., Tayeh, B., Yahaya, F., & Almeshal, I. (2022). Influence of different curing methods on the compressive strength of ultra-high-performance concrete: A comprehensive review. Case Studies in Construction Materials, 17, e01390. http://dx.doi.org/10.1016/j.cscm.2022.e01390

Hamdani, H., Zarkasi, A., & Darayani, D. H. (2024). Studi keseragaman kekuatan pada beton SCC dengan menggunakan non-destructive test. INNOVATIVE: Journal of Social Science Research, 4(4), 4435–4449. https://j-innovative.org/index.php/Innovative

He, Z. J., & Song, Y. P. (2010). Multiaxial tensile–compressive strengths and failure criterion of plain high-performance concrete before and after high temperatures. Construction and Building Materials, 24(4), 498-504. https://doi.org/10.1016/j.conbuildmat.2009.10.012

Huang, Y. X., Zhang, Y., Shi, H. R., Zeng, B., & Wang, C. L. (2025). Experimental study on multi-core buckling-restrained rod energy dissipater with square casing. Journal of Constructional Steel Research, 227, 109365. http://dx.doi.org/10.1016/j.jcsr.2025.109365

Hughes, B. P., & Watson, A. J. (1978). Compressive strength and ultimate strain of concrete under impact loading. Magazine of concrete research, 30(105), 189-199. https://doi.org/10.1680/macr.1978.30.105.189

Iffat, S. (2015). Relation between density and compressive strength of hardened concrete. Concrete Research Letters, 6(4), 182-189. https://doi.org/10.20528/cjcrl

Ikpa, C. C., Alaneme, G. U., Mbadike, E. M., Nnadi, E., Chigbo, I. C., Abel, C., ... & Odum, L. O. (2021). Evaluation of water quality impact on the compressive strength of concrete. Jurnal Kejuruteraan, 33(3), 527-538. http://dx.doi.org/10.17576/jkukm-2021-33(3)-15

Ispir, M., Ates, A. O., & Ilki, A. (2022, April). Low strength concrete: Stress-strain curve, modulus of elasticity and tensile strength. In Structures (Vol. 38, pp. 1615-1632). Elsevier. https://doi.org/10.1016/j.istruc.2022.01.018

Kang, S., Kim, S., & Kim, S. (2024). Automatic detection and classification process for concrete defects in deteriorating buildings based on image data. Journal of Asian Architecture and Building Engineering, 1-15. http://dx.doi.org/10.1080/13467581.2024.2373832

Khosravi, S. (2021). Seismic retrofit of reinforced concrete frame buildings with tension only braces (Doctoral dissertation, Université d'Ottawa/University of Ottawa).

Mulyono, T. (2004). Teknologi Beton. Penerbit Andi.

Nijssen, R. P. L. (2006). Fatigue life prediction and strength degradation of wind turbine rotor blade composites. Contractor Report SAND2006-7810P, Sandia National Laboratories, Albuquerque, NM.

Passipoularidis, V. A., Philippidis, T. P., & Brondsted, P. (2011). Fatigue life prediction in composites using progressive damage modelling under block and spectrum loading. International Journal of Fatigue, 33(2), 132-144. https://doi.org/10.1016/j.ijfatigue.2010.07.011

Pathurahman, Wati. N. K., & Utami N. L. P. (2006). Dinding Pracetak Beton Ringan Sebagai Dinding Geser Bangunan Rendah. Jurnal Rekayasa Sipil, 7(1), 69–78.

Paudel, S., Pudasaini, A., Shrestha, R. K., & Kharel, E. (2023). Compressive strength of concrete material using machine learning techniques. Cleaner Engineering and Technology, 15, 100661. https://doi.org/10.1016/j.clet.2023.100661

Paulay, T., & Priestley, M. N. (1992). Seismic design of reinforced concrete and masonry buildings (Vol. 768). New York: Wiley.

Pourbaba, M., Asefi, E., Sadaghian, H., & Mirmiran, A. (2018). Effect of age on the compressive strength of ultra-high-performance fiber-reinforced concrete. Construction and Building Materials, 175, 402-410. http://dx.doi.org/10.1016/j.conbuildmat.2018.04.203

Tran, V. Q., Dang, V. Q., & Ho, L. S. (2022). Evaluating compressive strength of concrete made with recycled concrete aggregates using machine learning approach. Construction and Building Materials, 323, 126578. http://dx.doi.org/10.1016/j.conbuildmat.2022.126578

Wu, S., Ramli, M. Z., Ngian, S. P., Qiao, G., & Jiang, B. (2025). Review on parametric building information modelling and forward design approaches for sustainable bridge engineering. Discover Applied Sciences, 7(2), 127. http://dx.doi.org/10.1007/s42452-025-06543-y

Xu, C., Lei, H., & Wang, G. (2023, January). Fatigue life and fatigue reliability assessment for long-span spatial structure based on long-term health monitoring data. In Structures (Vol. 47, pp. 586-594). Elsevier. http://dx.doi.org/10.1016/j.istruc.2022.11.104

Yue, H., Wang, Q., Zhao, H., Zeng, N., & Tan, Y. (2024). Deep learning applications for point clouds in the construction industry. Automation in Construction, 168, 105769. http://dx.doi.org/10.1016/j.autcon.2024.105769

Zarkasi, A., Hariyadi, & Kencanawati, N. N. (2017). Perilaku Struktur Portal Beton Dengan Pengekang Tali Kawat Baja Terhadap Gaya Lateral (Vol. 4, Issue 1). https://doi.org/https://spektrum.unram.ac.id/index.php/Spektrum/article/view/100

Zarkasi, A., Hariyadi, H., & Fitrayudha, A. (2022). Studi Perbandingan Kapasitas Portal Beton Dinding Pengisi Bata Ringan Pengujian Laboratorium dan SAP 2000 terhadap Gaya Lateral. Portal: Jurnal Teknik Sipil, 14(1), 31. https://doi.org/10.30811/portal.v14i1.2874

Zhang, P., Sun, Y., Wu, J., Guo, Z., & Wang, C. (2024). Properties of road subbase materials manufactured with geopolymer solidified waste drilling mud. Construction and Building Materials, 430, 136509. https://doi.org/10.1016/j.conbuildmat.2024.136509

Published
2025-06-12
How to Cite
Zarkasi, A., Fitrayudha, A., Hidayati, N., Santika, Y., & Marsa D.P, K. (2025). Experimental Study on the Utilisation of Independent Wire Fibre Core Steel Wire Rope Braces to Enhance the Stability of a 2d Concrete Portal against Lateral Forces. Journal La Multiapp, 6(3), 482-495. https://doi.org/10.37899/journallamultiapp.v6i3.2170