PROMETHEE Method for Prioritization of Electrical Energy Audit In Industry
Abstract
The problem of electricity in industry is the increasing consumption of electrical energy which results in increasing electricity consumption costs. The solution is how to reduce electrical energy consumption in the factory. The first step is to conduct an electrical energy audit. This research discusses electrical energy audits in industry with the aim of providing recommendations for electrical energy efficiency. The model is determined as an industrial electrical system complete with an electrical loading system. Parameters determined: production machinery, lighting systems, office support equipment, clean water pumps and air conditioners. The PROMETHEE method was used for prioritization in selecting from several alternative energy-saving opportunities. The research stages began with an initial energy audit, calculation of energy consumption intensity (IKE), recapitulation of electrical energy consumption, determination of energy saving opportunities, and PROMETHEE calculation. The PROMETHEE method used with 3 (three) alternatives, namely energy saving opportunities at no cost, low costs energy saving opportunities and high costs energy saving opportunities. As the research object, only the production building at PT Hop Lun Indonesia (HLI), Semarang, Indonesia was determined. The results show that PROMETHEE can be used for electrical energy audits in industry. This is evidenced by the prioritisation of the best recommendation results from the three alternatives, namely the first order in low-cost energy saving opportunities by replacing the type of LED lamp that has the potential to save energy by 2,723 KWH/day, the second order of energy saving opportunities at no cost by socializing to all employees regarding energy savings and conducting periodic maintenance and the last order in high-cost energy saving opportunities by replacing AC Inverters which have the potential to save energy by 390 KWH/day and replacing motors on sewing machines using servo motors which have the potential to save energy by 38,286,400 KWH/day.
References
Annunziata, E., Rizzi, F., & Frey, M. (2014). Enhancing energy efficiency in public buildings: The role of local energy audit programmes. Energy Policy, 69, 364-373. https://doi.org/10.1016/j.enpol.2014.02.027
Bakare, M. S., Abdulkarim, A., Zeeshan, M., & Shuaibu, A. N. (2023). A comprehensive overview on demand side energy management towards smart grids: challenges, solutions, and future direction. Energy Informatics, 6(1), 4. http://dx.doi.org/10.1186/s42162-023-00262-7
Bruni, G., De Santis, A., Herce, C., Leto, L., Martini, C., Martini, F., ... & Toro, C. (2021). From energy audit to energy performance indicators (EnPI): A methodology to characterize productive sectors. the Italian cement industry case study. Energies, 14(24), 8436. https://doi.org/10.3390/en14248436
Choir, Y. N., & Irawan, D. (2023). Electrical audit energy in the new building of Muhammadiyah Gresik University. Power Elektronik: Jurnal Orang Elektro, 12(1), 81–88. https://doi.org/10.30591/polektro.v12i1.4699
De Fonseka, T. S. (2023). Determination of environmental sustainability practices in the apparel sector of Sri Lanka. European Journal of Sustainable Development Research, 7(4). https://doi.org/10.29333/ejosdr/13816
Despa, D., Muhammad, M. A., Suriananto, A., Hamni, A., Nama, G. F., & Martini, Y. (2018). Monitoring dan Manajemen Energi Listrik Gedung Laboratorium Berbasis Internet of Things (IoT). Semin. Nas. Tek. Elektro 2018, 2-6.
Harvey, L. D. (2009). Reducing energy use in the buildings sector: measures, costs, and examples. Energy Efficiency, 2(2), 139-163. http://dx.doi.org/10.1007/s12053-009-9041-2
Hossain, J., Kadir, A. F., Hanafi, A. N., Shareef, H., Khatib, T., Baharin, K. A., & Sulaima, M. F. (2023). A review on optimal energy management in commercial buildings. Energies, 16(4), 1609. https://doi.org/10.3390/en16041609
Hossain, J., Kadir, A. F., Hanafi, A. N., Shareef, H., Khatib, T., Baharin, K. A., & Sulaima, M. F. (2023). A review on optimal energy management in commercial buildings. Energies, 16(4), 1609. https://doi.org/10.3390/en16041609
Imandasari, T., Wanto, A., & Windarto, A. P. (2018). Analysis of decision support system for determine to OJT’s student based on PROMETHEE method. JURIKOM (Jurnal Riset Komputer), 5(3), 234–239. https://doi.org/10.30865/jurikom.v5i3.677
Irianto, H. A. (2016). Statistik Konsep Dasar. Prenada Media.
Jadhav, V., Jadhav, R., Magar, P., Kharat, S., & Bagwan, S. U. (2017, May). Energy conservation through energy audit. In 2017 International Conference on Trends in Electronics and Informatics (ICEI) (pp. 481-485). IEEE. http://dx.doi.org/10.1109/ICOEI.2017.8300974
Jamal, J., Marlina, F. D., & Dwi, D. (2019). Audit energi dan analisis peluang penghematan energi listrik pada bagian produksi di PT. EPFM Makassar. Jurnal Teknik Mesin Sinergi, 17(1), 42-47. https://dx.doi.org/10.31963/sinergi.v17i1.1591
Mohammadi, M., Noorollahi, Y., Mohammadi-ivatloo, B., Hosseinzadeh, M., Yousefi, H., & Khorasani, S. T. (2018). Optimal management of energy hubs and smart energy hubs–A review. Renewable and Sustainable Energy Reviews, 89, 33-50. http://dx.doi.org/10.1016/j.rser.2018.02.035
Moya, D., Torres, R., & Stegen, S. (2016). Analysis of the Ecuadorian energy audit practices: A review of energy efficiency promotion. Renewable and Sustainable Energy Reviews, 62, 289-296. http://dx.doi.org/10.1016/j.rser.2016.04.052
National Standardization Agency of Indonesia. (2011). SNI 6196:2011 Energy audit procedure (pp. 1–16). https://pesta.bsn.go.id/produk/detail/9019-sni61962011
Noor, T. H., Haddin, M., & Marwanto, A. (2024). Decision support system based on fuzzy logic for energy auditing in hospital buildings. International Journal of Innovative Science, Engineering & Technology, 11(2), 2. www.ijiset.com
Nord-Ågren, E. (2002). The Electricity Usage Pattern for Cooker Manufacturing in Three European Countries. A Benchmarking Study of Electrolux Factories.
Oró, E., Depoorter, V., Garcia, A., & Salom, J. (2015). Energy efficiency and renewable energy integration in data centres. Strategies and modelling review. Renewable and Sustainable Energy Reviews, 42, 429-445. https://doi.org/10.1016/j.rser.2014.10.035
Pancarrani, G. P., Haddin, M., & Marwanto, A. (2023). Electrical Energy Audit Based on Fuzzy Logic for Hospital Building. IJISET-International Journal of Innovative Science, Engineering & Technology, 10, 4.
Saputra, O. (2022). Komunikasi Outseal PLC dengan Smartphone. Ranah Research: Journal of Multidisciplinary Research and Development, 4(4), 310-325. https://doi.org/10.38035/rrj.v4i4.539
Suharto, S. (2016). Analisis Penghematan Energi Listrik pada Rumah Sakit Umum Daerah Dokter Soedarso Pontianak Ditinjau dari Desain Instalasi. Elkha, 8(1), 357487. https://doi.org/10.26418/elkha.v8i1.16192
Talampas, J. P. (2019). Electricity sensors for resource efficiency and supply chain visibility in factories (Doctoral dissertation, Massachusetts Institute of Technology).
Thollander, P., & Palm, J. (2012). Improving energy efficiency in industrial energy systems: An interdisciplinary perspective on barriers, energy audits, energy management, policies, and programs. Springer Science & Business Media.
Yuliantoro, A. D., Nugroho, A. A., & Sukoco, B. (2019). Analisa Konsumsi Energi Listrik untuk Penghematan Energi Listrik di Gedung Fakultas Teknik Universitas Islam Sultan Agung. Prosiding Konstelasi Ilmiah Mahasiswa Unissula (KIMU) Klaster Engineering.
Copyright (c) 2025 Journal La Multiapp

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.