Prediction of Electrical Energy Needs for Capital City of Central Java Based on Backpropagation and Linear Regression
Abstract
This study discusses the prediction of electricity needs according to population growth. The model is determined by knowing the population and electricity needs. The parameters determined include: population, number of electricity consumers, energy consumption growth and electricity load factor for eleven years (2012-2023). The back propagation (BP) method and linear regression are used to help predict electricity needs for the next five years (2025-2030) with the BP architecture determined by three hidden layers and the number of neurons 12, 10 and 1. The object of the study was determined to be Semarang City, Indonesia. The results show that BP and linear regression can be used to predict electricity consumption needs in various sectors accurately. This is evidenced by the MAPE value below 10% and the MSE value of 2,65 x10-10 in the household sector, MSE 3,83 x 10-10 in the business sector, MSE 2,41 x 10-7 in the industrial sector, and MSE 3,6 x 10-12 in the public sector. The BP model produces predicted outputs of electrical energy in 2030 in the household sector of 1.104.140 MWH, the business sector of 843.757 MWH, the industrial sector of 1.027.790 MWH and the public sector of 375.974 MWH. The predicted increase in all sectors of electrical energy results in a total percentage of 54.21% for power sufficiency in 2030, so a thorough planning study is needed to meet electrical energy needs in that year.
References
Abiodun, O. E., & Segbenu, N. S. (2017). Critical Success Factors as a Tool for Sustainable Efficient Electricity Management in Nigerian Public Universities. Journal of Energy Technologies and Policy, 7(6), 6-22.
Ahmad, T., Madonski, R., Zhang, D., Huang, C., & Mujeeb, A. (2022). Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm. Renewable and Sustainable Energy Reviews, 160, 112128. https://doi.org/10.1016/j.rser.2022.112128
Akadiri, S. S., Adebayo, T. S., Riti, J. S., Awosusi, A. A., & Inusa, E. M. (2022). The effect of financial globalization and natural resource rent on load capacity factor in India: an analysis using the dual adjustment approach. Environmental Science and Pollution Research, 29(59), 89045-89062. https://doi.org/10.1007/s11356-022-22012-0
Al-Shetwi, A. Q. (2022). Sustainable development of renewable energy integrated power sector: Trends, environmental impacts, and recent challenges. Science of The Total Environment, 822, 153645. https://doi.org/10.1016/j.scitotenv.2022.153645
Benti, N. E., Chaka, M. D., & Semie, A. G. (2023). Forecasting renewable energy generation with machine learning and deep learning: Current advances and future prospects. Sustainability, 15(9), 7087. https://doi.org/10.3390/su15097087
Çeçen, M., Yavuz, C., Tırmıkçı, C. A., Sarıkaya, S., & Yanıkoğlu, E. (2022). Analysis and evaluation of distributed photovoltaic generation in electrical energy production and related regulations of Turkey. Clean Technologies and Environmental Policy, 1-16. https://doi.org/10.1007/s10098-021-02247-0
Çelik, D., Meral, M. E., & Waseem, M. (2022). Investigation and analysis of effective approaches, opportunities, bottlenecks and future potential capabilities for digitalization of energy systems and sustainable development goals. Electric Power Systems Research, 211, 108251. http://dx.doi.org/10.1016/j.epsr.2022.108251
Chen, C., Hu, Y., Karuppiah, M., & Kumar, P. M. (2021). Artificial intelligence on economic evaluation of energy efficiency and renewable energy technologies. Sustainable Energy Technologies and Assessments, 47, 101358. https://doi.org/10.1016/j.seta.2021.101358
Chen, Y., Tian, W., Zhou, Q., & Shi, T. (2021). Spatiotemporal and driving forces of Ecological Carrying Capacity for high-quality development of 286 cities in China. Journal of Cleaner Production, 293, 126186. http://dx.doi.org/10.1016/j.jclepro.2021.126186
Ding, Q., Wang, Z., Xiao, X., & Geng, X. (2025). Multi-Factorial Complex Effects Analysis of Energy Consumption Time Series with the Novel Nonlinear Grey Interaction Model. Computational Economics, 1-36. http://dx.doi.org/10.1007/s10614-024-10824-w
Gebremeskel, D. H., Ahlgren, E. O., & Beyene, G. B. (2021). Long-term evolution of energy and electricity demand forecasting: The case of Ethiopia. Energy Strategy Reviews, 36, 100671. https://doi.org/10.1016/j.esr.2021.100671
Ghafoor, A., Aldahmashi, J., Apsley, J., Djurović, S., Ma, X., & Benbouzid, M. (2024). Intelligent Integration of Renewable Energy Resources Review: Generation and Grid Level Opportunities and Challenges. Energies, 17(17), 4399. https://doi.org/10.3390/en17174399
Gupta, N., Gupta, S. K., Pathak, R. K., Jain, V., Rashidi, P., & Suri, J. S. (2022). Human activity recognition in artificial intelligence framework: a narrative review. Artificial intelligence review, 55(6), 4755-4808. https://doi.org/10.1007/s10462-021-10116-x
Hassan, M. A., Bailek, N., Bouchouicha, K., Ibrahim, A., Jamil, B., Kuriqi, A., ... & El-kenawy, E. S. M. (2022). Evaluation of energy extraction of PV systems affected by environmental factors under real outdoor conditions. Theoretical and Applied Climatology, 150(1), 715-729. http://dx.doi.org/10.1007/s00704-022-04166-6
Hernandez, L., Baladron, C., Aguiar, J. M., Carro, B., Sanchez-Esguevillas, A. J., Lloret, J., & Massana, J. (2014). A survey on electric power demand forecasting: future trends in smart grids, microgrids and smart buildings. IEEE Communications Surveys & Tutorials, 16(3), 1460-1495. http://dx.doi.org/10.1016/j.jobe.2020.101315
Hurriyati, R. A. A., Sulastri, S., Lisnawati, L., & Sawangsang, T. (2023). Stock market trend analysis and machine learning-based predictive evaluation. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 14(3), 267-281. http://dx.doi.org/10.58346/JOWUA.2023.I3.020
Kabeyi, M. J. B., & Olanrewaju, O. A. (2022). Sustainable energy transition for renewable and low carbon grid electricity generation and supply. Frontiers in Energy research, 9, 743114. https://doi.org/10.3389/fenrg.2021.743114
Khalid, A., Stevenson, A., & Sarwat, A. I. (2021). Overview of technical specifications for grid-connected microgrid battery energy storage systems. IEEe Access, 9, 163554-163593. http://dx.doi.org/10.1109/ACCESS.2021.3132223
Klyuev, R. V., Morgoev, I. D., Morgoeva, A. D., Gavrina, O. A., Martyushev, N. V., Efremenkov, E. A., & Mengxu, Q. (2022). Methods of forecasting electric energy consumption: A literature review. Energies, 15(23), 8919. https://doi.org/10.3390/en15238919
Kumar Singla, M., & Gupta, J. (2018). Load forecasting using back propagation algorithm. International Journal of Engineering and Techniques, Electrical and Instrumentation Engineering Department, Thapar Institute of Engineering and Technology Patiala, India.
Li, Y., & Zhao, X. (2012). An empirical study of the impact of human activity on long‐term temperature change in China: A perspective from energy consumption. Journal of Geophysical Research: Atmospheres, 117(D17). https://doi.org/10.1029/2012JD018132
Liu, H., Alharthi, M., Atil, A., Zafar, M. W., & Khan, I. (2022). A non-linear analysis of the impacts of natural resources and education on environmental quality: Green energy and its role in the future. Resources Policy, 79, 102940. https://doi.org/10.1016/j.resourpol.2022.102940
Mirzayev, S. N. O. G. L., & Esonov, T. B. O. G. L. (2024). Forecasting the urban electricity supply system. Oriental renaissance: Innovative, educational, natural and social sciences, 4(5), 558-563.
Oito, L. G. (2012). Strategies of small and micro enterprises and the key success factors in the energy industry in Kenya: A case study of enterprises in Kisumu (Doctoral dissertation).
Phan, P. D. D., Anh, M. A. N. N. M., & Nguyen, B. H. H. (2024). Using Linear Regression Analysis to Predict Energy Consumption. Research Square https://doi.org/10.21203/rs.3.rs-4590592/v1
Pimenow, S., Pimenowa, O., & Prus, P. (2024). Challenges of artificial intelligence development in the context of energy consumption and impact on climate change. Energies, 17(23), 5965. https://doi.org/10.3390/en17235965
Qu, R., Kou, R., & Zhang, T. (2025). The Impact of Weather Variability on Renewable Energy Consumption: Insights from Explainable Machine Learning Models. Sustainability, 17(1), 87. https://doi.org/10.3390/su17010087
Rahman, M. M., Shakeri, M., Tiong, S. K., Khatun, F., Amin, N., Pasupuleti, J., & Hasan, M. K. (2021). Prospective methodologies in hybrid renewable energy systems for energy prediction using artificial neural networks. Sustainability, 13(4), 2393. https://doi.org/10.3390/su13042393
Raimi, M. O., Abiola, I., & Omini, D. E. (2021). Exploring how human activities disturb the balance of biogeochemical cycles: Evidence from the carbon, nitrogen and hydrologic cycles. Nitrogen and Hydrologic Cycles (July 30, 2021). http://dx.doi.org/10.36956/rwae.v2i3.426
Raimi, M. O., Abiola, I., & Omini, D. E. (2021). Exploring how human activities disturb the balance of biogeochemical cycles: Evidence from the carbon, nitrogen and hydrologic cycles. Nitrogen and Hydrologic Cycles (July 30, 2021). https://dx.doi.org/10.2139/ssrn.3896054
Rohman, F., Al Amin, M. S., & Emidiana, E. (2022). Prediksi beban listrik dengan menggunakan jaringan syaraf tiruan metode backpropagation. Jurnal Surya Energy, 5(2), 55-60. https://doi.org/10.32502/jse.v5i2.3092
Rojek, I., Mroziński, A., Kotlarz, P., Macko, M., & Mikołajewski, D. (2023). AI-based computational model in sustainable transformation of energy markets. Energies, 16(24), 8059. https://doi.org/10.3390/en16248059
Ruiz, L. G. B., Pegalajar, M. C., Molina-Solana, M., & Guo, Y. K. (2020). A case study on understanding energy consumption through prediction and visualization (VIMOEN). Journal of Building Engineering, 30, 101315. http://dx.doi.org/10.1016/j.jobe.2020.101315
Safari, A., Daneshvar, M., & Anvari-Moghaddam, A. (2024). Energy Intelligence: A Systematic Review of Artificial Intelligence for Energy Management. Applied Sciences, 14(23), 11112. https://doi.org/10.3390/app142311112
Saheb, T., Dehghani, M., & Saheb, T. (2022). Artificial intelligence for sustainable energy: A contextual topic modeling and content analysis. Sustainable Computing: Informatics and Systems, 35, 100699. https://doi.org/10.1016/j.suscom.2022.100699
Selvam, N., Seenivasan, D., Naveen, G., Sudahar, R., Janagan, P., & Dhanushmathi, S. (2024, March). Monitoring of Individual Household Electrical Appliances and Prediction of Energy Consumption Using Machine Learning. In 2024 5th International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV) (pp. 925-931). IEEE. https://doi.org/10.1109/ICICV62344.2024.00152
Strielkowski, W., Vlasov, A., Selivanov, K., Muraviev, K., & Shakhnov, V. (2023). Prospects and challenges of the machine learning and data-driven methods for the predictive analysis of power systems: A review. Energies, 16(10), 4025. https://doi.org/10.3390/en16104025
Trach, R., Tyvoniuk, V., Wierzbicki, T., Trach, Y., Kowalski, J., Szymanek, S., ... & Podvornyi, A. (2025). Using AI-Based Tools to Quantify the Technical Condition of Bridge Structural Components. Applied Sciences, 15(3), 1625. https://doi.org/10.3390/app15031625
Tsokos, C. P. (2008). A weighted moving average process for forecasting. Journal of Modern Applied Statistical Methods, University of South Florida. https://doi.org/10.56801/10.56801/v7.i.354
Verma, S., Kameswari, Y. L., & Kumar, S. (2024). A Review on Environmental Parameters Monitoring Systems for Power Generation Estimation from Renewable Energy Systems. BioNanoScience, 14(4), 3864-3888. http://dx.doi.org/10.1007/s12668-024-01358-4
Copyright (c) 2025 Journal La Multiapp

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.