Implementation of Machine Learning-Based Classification Model in Employee Recruitment Decision Prediction
Abstract
Employees are vital assets for any organization, and accurate recruitment decision-making is crucial for the organization's long-term success. Incorrect decisions can lead to high costs due to re-hiring processes, onboarding, and decreased productivity. This study aims to develop a recruitment decision prediction model using data obtained from the Final Results of the 2024 CPNS Recruitment in the Ministry of Finance. The data includes attributes such as educational background, age, GPA, SKD Score, and SKB Score. To understand the relationships between variables, correlation analysis was conducted using a correlation matrix and heatmap visualization. Additionally, data exploration was performed using histograms to show the influence of attributes on recruitment decisions. This study employs five machine learning algorithms for prediction: Linear Support Vector Machine, Decision Tree (C5.0), Random Forest, k-Nearest Neighbor (k-NN), and Naïve Bayes Classifier. The results indicate that some attributes significantly influence recruitment decisions, and machine learning models can identify candidates who are more suitable for the available positions. Among the five models tested, Naïve Bayes proved to be the most effective, achieving an accuracy of 88% and an AUC of 0.97, demonstrating its strong performance in distinguishing positive and negative classes. The key factors contributing to the model's success include relevant feature selection, data quality, as well as appropriate preprocessing and validation techniques. This model is expected to enhance objectivity, efficiency, and accuracy in employee recruitment processes, thereby assisting organizations in making more precise and fair decisions.
References
Amaliah, S., Nusrang, M., & Aswi, A. (2022). Penerapan Metode Random Forest Untuk Klasifikasi Varian Minuman Kopi di Kedai Kopi Konijiwa Bantaeng. VARIANSI: Journal of Statistics and Its Application on Teaching and Research, 4(3), 121–127. https://doi.org/10.35580/variansiunm31
Anand, A., & Dubey, Mr. S. (2022). CV Analysis Using Machine Learning. International Journal for Research in Applied Science and Engineering Technology, 10(5), 1316–1322. https://doi.org/10.22214/ijraset.2022.42295
Barokah, F. U., & Gunawan, A. (2023). Strategi Rekrutmen dan Seleksi yang Efektif untuk Meningkatkan Kualitas Tenaga Kerja. GLOBAL: Jurnal Lentera BITEP, 1(02), 60–65. https://doi.org/10.59422/global.v1i02.145
Blanquero, R., Carrizosa, E., Ramírez-Cobo, P., & Sillero-Denamiel, M. R. (2021). Variable Selection for Naïve Bayes Classification. Computers & Operations Research, 135, 105456. https://doi.org/10.1016/j.cor.2021.105456
Cholil, S. R., Handayani, T., Prathivi, R., & Ardianita, T. (2021). Implementasi Algoritma Klasifikasi K-Nearest Neighbor (KNN) Untuk Klasifikasi Seleksi Penerima Beasiswa. IJCIT: (Indonesian Journal on Computer and Information Technology, 6(2), 118–127. https://doi.org/10.62951/modem.v2i3.130
Goretzko, D., & Israel, L. S. F. (2022). Pitfalls of Machine Learning-Based Personnel Selection. Journal of Personnel Psychology, 21(1), 37–47. https://doi.org/10.1027/1866-5888/a000287
Gupta, A., Gupta, S., Mall, P. K., & Srivastava, S. (2024). ML-CPC: A Pathway for Machine Learning Based Campus Placement Classification. Journal of Electrical Systems, 20(3s), 1453–1464. https://doi.org/10.52783/jes.1521
Halder, R. K., Uddin, M. N., Uddin, Md. A., Aryal, S., & Khraisat, A. (2024). Enhancing K-nearest Neighbor Algorithm: a Comprehensive Review and Performance Analysis of Modifications. Journal of Big Data, 11(1), 113. https://doi.org/10.1186/s40537-024-00973-y
Hartono, H., Hajjah, A., & Marlim, Y. N. (2023). Penerapan Metode Naïve Bayes Classifier untuk Klasifikasi Judul Berita. Jurnal SimanteC, 12(1), 37–46.
Hein, A. Z., Elving, W. J. L., Koster, S., & Edzes, A. (2024). Is Your Employer Banding Strategy Effective? The Role of Employee Predisposition in Achieving Employer Attractiveness. Corporate Communications: An International Journal, 29(7), 1–20. https://doi.org/10.1108/CCIJ-07-2022-0070
Kharisma, I. M., & Wening, N. (2023). Peran Rekrutmen dan Seleksi Terhadap Kinerja Karyawan Perusahaan: Sebuah Tinjauan Literatur Sistematik. Jurnal E-Bis, 7(1), 61–80. https://doi.org/10.37339/e-bis.v7i1.1111
Kurniadi, D., Nuraeni, F., & Lestari, S. M. (2022). Implementasi Algoritma Naïve Bayes Menggunakan Feature Forward Selection dan SMOTE Untuk Memprediksi Ketepatan Masa Studi Mahasiswa Sarjana. Jurnal Sistem Cerdas, 5(2), 63–82. https://doi.org/10.37396/jsc.v5i2.215
Muchtar, M., & Muchtar, R. A. (2024). Perbandingan Metode KKN dan SVM dalam Klasifikasi Kematangan Buah Mangga Berdasarkan Citra Hsv dan Fitur Statistik. Jurnal Informatika Dan Teknik Elektro Terapan, 12(2). https://doi.org/10.23960/jitet.v12i2.4010
Pampouktsi, P., Avdimiotis, S., Μaragoudakis, M., & Avlonitis, M. (2021). Applied Machine Learning Techniques on Selection and Positioning of Human Resources in the Public Sector. Open Journal of Business and Management, 09(02), 536–556. https://doi.org/10.4236/ojbm.2021.92030
Pekdas, I. G., Uflaz, E., Tornacı, F., Arslan, O., & Turan, O. (2024). Developing a Machine Learning-Based Evaluation System for the Recruitment of Maritime Professionals. Ocean Engineering, 313, 119406. https://doi.org/10.1016/j.oceaneng.2024.119406
Reddy, D. J. M., Regella, S., & Seelam, S. R. (2020). Recruitment Prediction using Machine Learning. 2020 5th International Conference on Computing, Communication and Security (ICCCS), 1–4. https://doi.org/10.1109/ICCCS49678.2020.9276955
Rianti, A., Majid, N. W. A., & Fauzi, A. (2023). CRISP-DM: Metodologi Proyek Data Science. SENATIB: Prosiding Seminar Nasional Teknologi Informasi Dan Bisnis, 107–114.
Saputra, D. B., Atina, V., & Nastiti, F. E. (2024). Penerapan Model CRISP-DM pada Prediksi Nasabah Kredit Menggunakan Algoritma Random Forest. IDEALIS : InDonEsiA JournaL Information System, 7(2), 240–247. https://doi.org/10.36080/idealis.v7i2.3244
Smelyakov, K., Hurova, Y., & Osiievskyi, S. (2023). Analysis of the Effectiveness of Using Machine Learning Algorithms to Make Hiring Decisions. 7th International Conference on Computational Linguistics and Intelligent Systems, 1(3387).
Syafaruddin, S. (2024). Recruitment, Job Placement and Employee Performance. Advances in Human Resource Management Research, 2(3), 179–190. https://doi.org/10.60079/ahrmr.v2i3.163
Tangkelobo, E., Mayaut, W., Listanto, H., Binanto, I., & Sianipar, N. F. (2023). Perbandingan Algoritma Klasifikasi Random Forest, Gaussian Naive Bayes, dan K-Nearest untuk Data Tidak Seimbang dan Data yang diseimbangkan dengan metode Random Undersampling pada dataset LCMS Tanaman Keladi Tikus. 8th Seminar Nasional Teknik Elektro, Informatika & Sistem Informasi (SINTaKS).
Tian, X., Pavur, R., Han, H., & Zhang, L. (2023). A Machine Learning-Based Human Resources Recruitment System for Business Process Management: Using LSA, BERT and SVM. Business Process Management Journal, 29(1), 202–222. https://doi.org/10.1108/BPMJ-08-2022-0389
Titisari, M., & Ikhwan, K. (2021). Proses Rekrutmen dan Seleksi: Potensi Ketidakefektifan dan Faktornya. JMK (Jurnal Manajemen Dan Kewirausahaan), 6(3), 11. https://doi.org/10.32503/jmk.v6i3.1848
Vivek, R. (2023). Enhancing Diversity and Reducing Bias in Recruitment through AI: a Review of Strategies and Challenges. Информатика. Экономика. Управление - Informatics. Economics. Management, 2(4), 0101–0118. https://doi.org/10.47813/2782-5280-2023-2-4-0101-0118
Yildizhan, H., Hosouli, S., Yılmaz, S. E., Gomes, J., Pandey, C., & Alkharusi, T. (2023). Alternative Work Arrangements: Individual, Organizational and Environmental Outcomes. Heliyon, 9(11), 1–16. https://doi.org/10.1016/j.heliyon.2023.e21899
Yuliani, S., & Aliyyah, R. R. (2024). Seleksi Tenaga Pendidik: Penerapan Rekrutmen pada Sekolah Dasar. Karimah Tauhid, 3(3), 2685–2702. https://doi.org/10.30997/karimahtauhid.v3i3.12203
Zuhri, B., & Harani, N. H. (2023). Aplikasi Rekrutmen Karyawan Menggunakan Artificial Neural Network dan Flask. Jurnal Sisfotenika, 13(2), 125–138. http://dx.doi.org/10.30700/jst.v13i2.1367
Copyright (c) 2025 Journal La Multiapp

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.