Analysis of Quality Control of Fabric Products Using Statistical Quality Control (SQC) Methods and Failure Mode and Effect Analysis (FMEA)

  • Muhammad Anjab Al Habri Universitas Pembangunan Nasional "Veteran" Jawa Timur, Indonesia
  • Dwi Sukma Donoriyanto Universitas Pembangunan Nasional "Veteran" Jawa Timur, Indonesia
Keywords: Statistical Quality Control, Failure Mode and Effect, Analysis, Fabric, Defect

Abstract

Companies in the industrial world, both manufacturing and service industries, are required to face market competition in order to compete and survive. One thing that companies need to pay attention to is the quality of the products produced. Good product quality will make consumers like the product. Therefore, improving product quality must be considered by the company. One of the companies that produces fabric, namely PT. XYZ, has a problem of not knowing the level of quality of the fabric produced, so this study aims to determine the quality of the product and provide suggestions for improvement to the company. There are defects in fabric production, namely double weft with a percentage of 27.7%, loose weft 26.7%, broken warp 24.5% and thick weft 21.2%. Improvement proposals are given to the highest percentage of defects, namely double weft with the following proposals: Carrying out machine maintenance and replacing the new gun eye so that the gun eye is not blunt, replacing the roller on the worn warping machine with a new roller, providing comprehensive and intensive training to workers on how to use the machine effectively and correctly. It is hoped that this research can help the company improve the quality of the fabric products produced.

References

Akbar, D. C. (2018). Analisa Pengendalian Kualitas Produk Gula Kelapa Organik dengan menggunakan Statistical Quality Control (SQC) pada PT. Pathbe Agronik Indonesia, Cilacap, Jawa Tengah. Universitas Islam Indonesia

Alam, A. U., Rathi, P., Beshai, H., Sarabha, G. K., & Deen, M. J. (2021). Fruit quality monitoring with smart packaging. Sensors, 21(4), 1509. https://doi.org/10.3390/s21041509

Alzoubi, H. M., In'airat, M., & Ahmed, G. (2022). Investigating the impact of total quality management practices and Six Sigma processes to enhance the quality and reduce the cost of quality: the case of Dubai. International journal of business excellence, 27(1), 94-109. https://doi.org/10.1504/IJBEX.2022.123036

Andri, N. (2018). Pengendalian Kualitas Produk Baja Menggunakan Metode Statistical Quality Control (SQC) Dan Failure Mode Effect Analysis (FMEA) Di PT XYZ (Doctoral dissertation, Universitas Sumatera Utara).

Arifin, R., Ningsih, A. A. T., & Putri, A. K. (2021). The important role of MSMEs in improving the economy. East Asia Journal of Contemporary Business, Economics and Law, 24(6), 52-59.

Ayenigba, A. A., & Ajao, O. M. (2025). Application of Statistical Quality Control in Monitoring the Production and Marketing Process of Sachet Water at Ajayi Crowther Water Factory, Oyo, Nigeria. Ajayi Crowther Journal of Pure and Applied Sciences, 4(1). http://dx.doi.org/10.56534/acjpas.2025.04.01.25

Balasubadra, K., Shadaksharappa, B., Seeni, S. K., Sridevi, V., & Srinivasan, C. (2024, April). Real-time glass recycling quality assurance and contamination reduction with iot and random forest algorithm. In 2024 International Conference on Inventive Computation Technologies (ICICT) (pp. 1788-1793). IEEE. https://doi.org/10.1109/ICICT60155.2024.10544632

Barat, M., Jannot, A. S., Dohan, A., & Soyer, P. (2022). How to report and compare quantitative variables in a radiology article. Diagnostic and Interventional Imaging, 103(12), 571-573. https://doi.org/10.1016/j.diii.2022.09.007

Chukwunweike, J., Anang, A. N., Adeniran, A. A., & Dike, J. (2024). Enhancing manufacturing efficiency and quality through automation and deep learning: addressing redundancy, defects, vibration analysis, and material strength optimization Vol. 23. World Journal of Advanced Research and Reviews. GSC Online Press. http://dx.doi.org/10.30574/wjarr.2024.23.3.2800

Dutta, G., Kumar, R., Sindhwani, R., & Singh, R. K. (2021). Digitalization priorities of quality control processes for SMEs: A conceptual study in perspective of Industry 4.0 adoption. Journal of Intelligent Manufacturing, 32(6), 1679–1698. https://doi.org/10.1007/s10845-021-01783-2

Escobar, C. A., McGovern, M. E., & Morales-Menendez, R. (2021). Quality 4.0: a review of big data challenges in manufacturing. Journal of Intelligent Manufacturing, 32(8), 2319-2334. https://doi.org/10.1007/s10845-021-01765-4

Hagutin, G. G., Roger, J. P., Lastimosa, M. C., Naive, D. J. P., & Namoco Jr, C. S. (2022). Utilization of Statistical Quality Control (Sqc) Tools in Evaluating the Self-Learning Modules for Basic Education. Sci. Int.(Lahore), 34(4), 367-371.

Haider, S. W., Musunuru, G., & Chatti, K. (2017). Effect of sample size and methods on percent within limits for quality control and assurance. In Airfield and Highway Pavements 2017 (pp. 134-144). http://dx.doi.org/10.1061/9780784480922.012

Hairiyah, N., Musthofa, I., & Sakhatun, I. (2022). Pengendalian Kualitas Produk Ribbed Smoke Sheet (Rss) Menggunakan Statistical Quality Control (Sqc) Di Pt. Xyz Ribbed Smoke Sheet (Rss) Product Quality Control Using Statistical Quality Control (Sqc) At PT. XYZ. Jurnal Agroindustri, 12(1), 21–28. https://doi.org/10.31186/j.agroindustri.12.1.21-28

Handayani, W., & Yusuf, M. A. (2022). Analisis Dan Mitigasi Resiko Rantai Pasok Dengan Metode AHP Dan FMEA. REVITALISASI: Jurnal Ilmu Manajemen, 11(1), 43-53. http://dx.doi.org/10.32503/revitalisasi.v11i1.2501

Hangesthi, V. C., & Rochmoeljati, R. R. (2021). Analisis kecacatan produk tungku kompor dengan metode Statistical Quality Control (SQC) dan Failure Mode and Effect Analysis (FMEA) di PT. Elang Jagad. Jurnal Manajemen Industri dan Teknologi, 2(4), 13–24. https://doi.org/10.33005/juminten.v2i4.291

Harahap, B., Parinduri, L., & Fitria, A. A. L. (2018). Analisis Pengendalian Kualitas Dengan Menggunakan Metode Six-Sigma. Buletin Utama Teknik Vol, 13(3). https://doi.org/10.30743/but.v13i3.541

Helo, P., & Hao, Y. (2022). Artificial intelligence in operations management and supply chain management: An exploratory case study. Production Planning & Control, 33(16), 1573-1590. http://dx.doi.org/10.1080/09537287.2021.1882690

Ishak, A., Siregar, K., Ginting, R., & Manik, A. (2020, December). Analysis roofing quality control using statistical quality control (sqc)(case study: xyz company). In IOP Conference Series: Materials Science and Engineering (Vol. 1003, No. 1, p. 012085). IOP Publishing. http://dx.doi.org/10.1088/1757-899X/1003/1/012085

Islam, S., Hasan, A. M., Bhuiyan, M. A. R., & Bhat, G. (2024). Evaluation of environmental impacts of cotton polo shirt production in Bangladesh using life cycle assessment. Science of The Total Environment, 926, 172097. https://doi.org/10.1016/j.scitotenv.2024.172097

Kanitz, R., Gonzalez, K., Briker, R., & Straatmann, T. (2023). Augmenting organizational change and strategy activities: Leveraging generative artificial intelligence. The Journal of Applied Behavioral Science, 59(3), 345–363. https://doi.org/10.1177/00218863231168974

Kovacova, M., & Lăzăroiu, G. (2021). Sustainable organizational performance, cyber-physical production networks, and deep learning-assisted smart process planning in Industry 4.0-based manufacturing systems. Economics, Management and Financial Markets, 16(3), 41–54. http://dx.doi.org/10.22381/emfm16320212

Kumar, P. S., Prasanth, S. M., Harish, S., & Rishikesh, M. (2021). Industrial water footprint: case study on textile industries. Water footprint: assessment and case studies, 35-60. http://dx.doi.org/10.1007/978-981-33-4377-1_2

Lestyánszka Škůrková, K., Fidlerová, H., Niciejewska, M., & Idzikowski, A. (2023). Quality improvement of the forging process using Pareto analysis and 8D methodology in automotive manufacturing: a case study. Standards, 3(1), 84-94. http://dx.doi.org/10.3390/standards3010008

Liu, H., Alharthi, M., Atil, A., Zafar, M. W., & Khan, I. (2022). A non-linear analysis of the impacts of natural resources and education on environmental quality: Green energy and its role in the future. Resources Policy, 79, 102940. http://dx.doi.org/10.1016/j.resourpol.2022.102940

Mardiani, E., Riswandi, D. I., Suprayitno, D., & Mudia, H. (2024). Implementation of internet of things in the production process of msmes: quality improvement and process control. Jurnal Informasi dan Teknologi, 310-316. http://dx.doi.org/10.60083/jidt.v6i1.520

Pinkovetskaia, I. S., Nuretdinova, Y. V., Nuretdinov, I., & Lipatova, N. (2021). Mathematical modeling on the base of functions density of normal distribution. Revista de la Universidad del Zulia, 12(33), 34-49. http://dx.doi.org/10.46925//rdluz.33.04

Prunella, M., Scardigno, R. M., Buongiorno, D., Brunetti, A., Longo, N., Carli, R., ... & Bevilacqua, V. (2023). Deep learning for automatic vision-based recognition of industrial surface defects: A survey. IEEE Access, 11, 43370–43423. http://dx.doi.org/10.1109/ACCESS.2023.3271748

Ramlawati, R., & Kusuma, A. H. P. (2018). Total quality management as the key of the company to gain the competitiveness, performance achievement and consumer satisfaction. International Review of Management and Marketing, 8(5), 60–69. https://doi.org/10.32479/irmm.6932

Sanny, L., Angelina, V., & Christian, B. B. (2021). Innovation of SME service industry in Indonesia in improving customer satisfaction. Journal of Science and Technology Policy Management, 12(2), 351–370. https://doi.org/10.1108/JSTPM-03-2020-0056

Solis, M., Huygens, D., Tonini, D., & Astrup, T. F. (2024). Management of textile waste in Europe: An environmental and a socio-economic assessment of current and future scenarios. Resources, Conservation and Recycling, 207, 107693. https://doi.org/10.1016/j.resconrec.2024.107693

Talukder, M. A., Islam, M. M., Uddin, M. A., Hasan, K. F., Sharmin, S., Alyami, S. A., & Moni, M. A. (2024). Machine learning-based network intrusion detection for big and imbalanced data using oversampling, stacking feature embedding and feature extraction. Journal of big data, 11(1), 33. http://dx.doi.org/10.1186/s40537-024-00886-w

Tan, A. B., van Dun, D. H., & Wilderom, C. P. (2024). Lean innovation training and transformational leadership for employee creative role identity and innovative work behavior in a public service organization. International Journal of Lean Six Sigma, 15(8), 1–31. https://doi.org/10.1108/IJLSS-06-2022-0126

Wang, H., Chen, Y., Wang, L., Liu, Q., Yang, S., & Wang, C. (2023). Advancing herbal medicine: enhancing product quality and safety through robust quality control practices. Frontiers in pharmacology, 14, 1265178. https://doi.org/10.3389/fphar.2023.1265178

Westgard, S. A., Bayat, H., & Westgard, J. O. (2018). Selecting a risk-based SQC procedure for a HbA1c total QC plan. Journal of diabetes science and technology, 12(4), 780-785. https://doi.org/10.1177/1932296817729488

Wicaksono, A. H. (2019). Analisis Defect Pengelasan dan Penanggulangannya Dengan Metode Six Sigma, FMEA dan FTA (Studi Kasus Pada PT PAL Surabaya) (Doctoral dissertation, Universitas Katolik Darma Cendika).

Wirawati, S. M., & Juniarti, A. D. (2020). Pengendalian Kualitas Produk benang Carded Untuk Mengurangi Cacat Dengan Menggunakan Failure Mode And Effect Analysis (FMEA). Jurnal Intent: Jurnal Industri dan Teknologi Terpadu, 3(2), 90-98. https://doi.org/10.47080/intent.v3i2.954

Published
2025-07-15
How to Cite
Al Habri, M. A., & Donoriyanto, D. S. (2025). Analysis of Quality Control of Fabric Products Using Statistical Quality Control (SQC) Methods and Failure Mode and Effect Analysis (FMEA) . Journal La Multiapp, 6(3), 662-676. https://doi.org/10.37899/journallamultiapp.v6i3.2032