Sentiment Analysis of Bamboo Charcoal: Comparing Machine Learning Algorithms for Effective Insights

  • Giovanni Ega Agustine Information Systems Management Department, BINUS Graduate Program, Master of Information Systems Management, Bina Nusantara University, Jakarta 11480, Indonesia
  • Riyanto Jayadi Information Systems Management Department, BINUS Graduate Program, Master of Information Systems Management, Bina Nusantara University, Jakarta 11480, Indonesia
Keywords: SVM, KNN, Sentiment Analysis, Bamboo Charcoal

Abstract

This research aims to analyze sentiments toward bamboo charcoal on social media, with a focus on public perception in the global market in English. Using data collected from the social media platform X, this study applies various machine learning algorithms, including Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Deep Learning, Naïve Bayes, Decision Tree, and Gradient Boosted Trees, with TF-IDF as the text representation. The analysis reveals that the SVM model achieved the most accurate result of 92.33%, demonstrating its effectiveness in sentiment detection. The study also found that the KNN model performed well, achieving an accuracy of 92.26%, although slightly lower than SVM. These findings highlight the growing interest in bamboo charcoal as a sustainable product, reflecting positive sentiments in the data. Additionally, the Deep Learning model also showed promising results, although it was slightly less effective than SVM and KNN. However, there were also notable concerns regarding the environmental impact of bamboo harvesting, which were primarily expressed in posts. The Decision Tree model, while useful, did not perform as well as the other models, indicating the need for further refinement. Future research could explore a broader range of social media platforms, models, and languages to gain a more comprehensive understanding of global perceptions. Furthermore, integrating sentiment analysis with real-time monitoring could help stakeholders respond more effectively to shifts in public opinion.

References

Afumatu, A. D. (2023). Exploring text classification through the lens of Artificial Intelligence. A Comparative Analysis and Evaluation (Master's thesis, Universitat Politècnica de Catalunya).

Afumatu, A. D. (2023). Exploring text classification through the lens of Artificial Intelligence. A Comparative Analysis and Evaluation (Master's thesis, Universitat Politècnica de Catalunya).

Agustina, C. A. N., Novita, R., Mustakim, & Rozanda, N. E. (2024). The implementation of TF-IDF and Word2Vec on booster vaccine sentiment analysis using support vector machine algorithm. Procedia Computer Science, 8. https://doi.org/10.1016/j.procs.2024.02.162

Agustine, G. E., & Jayadi, R. (2025). Sentiment Analysis of Bamboo Charcoal: Comparing Machine Learning Algorithms for Effective Insights. Journal La Multiapp, 6(2), 287-298. https://doi.org/10.37899/journallamultiapp.v6i2.2010

Albahri, A. S., Duhaim, A. M., Fadhel, M. A., Alnoor, A., Baqer, N. S., Alzubaidi, L., ... & Deveci, M. (2023). A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data fusion. Information Fusion, 96, 156-191. https://doi.org/10.1016/j.inffus.2023.03.008

Alsemaree, O., Alam, A. S., Gill, S. S., & Uhlig, S. (2024). Sentiment analysis of Arabic social media texts: A machine learning approach to deciphering customer perceptions. Heliyon, 10. https://doi.org/10.1016/j.heliyon.2024.e27863

Atandoh, P., Zhang, F., Al-antari, M. A., Addo, D., & Gu, Y. H. (2024). Scalable deep learning framework for sentiment analysis prediction for online movie reviews. Heliyon, 19. https://doi.org/10.1016/j.heliyon.2024.e30756

Bansal, H., & Jain, K. (2024). Role of Green Marketing Strategies in determining Consumer Purchase Intentions (Doctoral dissertation).

Cahyani, D. E., & Patasik, I. (2021). Performance comparison of tf-idf and word2vec models for emotion text classification. Bulletin of Electrical Engineering and Informatics, 10(5), 2780-2788. https://doi.org/10.11591/eei.v10i5.3157

Das, R. K., Islam, M., Hasan, M. M., Razia, S., Hassan, M., & Khushbu, S. A. (2023). Sentiment analysis in multilingual context: Comparative analysis of machine learning and hybrid deep learning models. Heliyon, 9(9). https://doi.org/10.1016/j.heliyon.2023.e20281

Dashtipour, K., Poria, S., Hussain, A., Cambria, E., Hawalah, A. Y., Gelbukh, A., & Zhou, Q. (2016). Multilingual sentiment analysis: state of the art and independent comparison of techniques. Cognitive computation, 8, 757-771. https://doi.org/10.1007/s12559-016-9415-7

Daza, A., González Rueda, N. D., Aguilar Sánchez, M. S., Robles Espíritu, W. F., & Chauca Quiñones, M. E. (2024). Sentiment analysis on e-commerce product reviews using machine learning and deep learning algorithms: A bibliometric analysis, systematic literature review, challenges and future works. International Journal of Information Management Data Insights, 20. https://doi.org/10.1016/j.jjimei.2024.100267

Demir, S., & Sahin, E. K. (2024). The effectiveness of data pre-processing methods on the performance of machine learning techniques using RF, SVR, Cubist and SGB: a study on undrained shear strength prediction. Stochastic Environmental Research and Risk Assessment, 38(8), 3273-3290. https://doi.org/10.1007/s00477-024-02745-9

George, M. (2024). Improving sentiment analysis of financial news headlines using hybrid Word2Vec-TFIDF feature extraction technique. Procedia Computer Science, 244, 1-8. https://doi.org/10.1016/j.procs.2024.10.172

Ghavidel, A., & Pazos, P. (2025). Machine learning (ML) techniques to predict breast cancer in imbalanced datasets: a systematic review. Journal of Cancer Survivorship, 19(1), 270-294. https://doi.org/10.1007/s11764-023-01465-3

Gupta, V., & Rattan, D. P. (2023). Improving Twitter sentiment analysis efficiency with SVM_PSO classification and EFWS heuristic. Procedia Computer Science, 18. https://doi.org/10.1016/j.procs.2023.12.125

Halawani, H. T., Mashraqi, A. M., Badr, S. K., & Alkhalaf, S. (2023). Automated sentiment analysis in social media using Harris Hawks optimization and deep learning techniques. Alexandria Engineering Journal, 80(September), 433–443. https://doi.org/10.1016/j.aej.2023.08.062

Hamid, A. I., & Abdulazeez, A. M. (2024). Sentiment Analysis Based on Machine Learning Techniques: A Comprehensive Review. The Indonesian Journal of Computer Science, 13(3). https://doi.org/10.33022/ijcs.v13i3.4049

Hidayat, T. H. J., Ruldeviyani, Y., Aditama, A. R., Madya, G. R., Nugraha, A. W., & Adisaputra, M. W. (2022). Sentiment analysis of Twitter data related to Rinca Island development using Doc2Vec and SVM and logistic regression as classifier. Procedia Computer Science, 8. https://doi.org/10.1016/j.procs.2021.12.187

Jahan, I., Islam, M. N., Hasan, M. M., & Siddiky, M. R. (2024). Comparative analysis of machine learning algorithms for sentiment classification in social media text. World J. Adv. Res. Rev, 23(3), 2842-2852. http://dx.doi.org/10.30574/wjarr.2024.23.3.2983

Jannani, A., Bouhsissin, S., Sael, N., & Benabbou, F. (2025). Topic Modeling and Sentiment Analysis of Arabic News Headlines for a Societal Well-Being Scoring and Monitoring System: Moroccan Use Case. IEEE Access. http://dx.doi.org/10.1109/ACCESS.2025.3538888

Khan Niazi, A., Khadija, I., Tariq, Z., Kamran, M., Malik, M., & Zaman, M. T. (2020). Comparative sentiment analysis of product review using machine learning and deep learning algorithm. GS International Conference on Computer Science and Engineering, 2020(August), 2–5.

Kumar, R., & Thirumaran, S. (2024, April). Enhancing Automatic English Word Analysis and Prediction using Higher-Order N-Gram Models. In 2024 International Conference on Science Technology Engineering and Management (ICSTEM) (pp. 1-7). IEEE. http://dx.doi.org/10.1109/ICSTEM61137.2024.10560953

Kumar, R., Goswami, B., Mhatre, S. M., & Agrawal, S. (2024). Naive bayes in focus: a thorough examination of its algorithmic foundations and use cases. Int. J. Innov. Sci. Res. Technol, 9(5), 2078-2081. https://doi.org/10.38124/ijisrt/IJISRT24MAY1438

Li, C. Y., Renda, M., Yusuf, F., Geller, J., & Chun, S. A. (2022). Public health policy monitoring through public perceptions: a case of covid-19 tweet analysis. Information, 13(11), 543. https://doi.org/10.3390/info13110543

Liao, T., Taori, R., Raji, I. D., & Schmidt, L. (2021, January). Are we learning yet? a meta review of evaluation failures across machine learning. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2).

Madanchian, M., Taherdoost, H., Vincenti, M., & Mohamed, N. (2024). Transforming leadership practices through artificial intelligence. Procedia Computer Science, 235, 2101–2111. https://doi.org/10.1016/j.procs.2024.04.199

Maleki, N., Padmanabhan, B., & Dutta, K. (2023). The effect of monetary incentives on health care social media content: study based on topic modeling and sentiment analysis. Journal of Medical Internet Research, 25, e44307. https://doi.org/10.2196/44307

Moe, W. W., & Schweidel, D. A. (2017). Opportunities for innovation in social media analytics. Journal of product innovation management, 34(5), 697-702. https://doi.org/10.1111/jpim.12405

Neha, P., & Aravendan, M. (2023). A Review on Sustainable Product Design, Marketing Strategies and Conscious Consumption of Bamboo Lifestyle Products. Intelligent Information Management, 15(3), 67-99. http://dx.doi.org/10.4236/iim.2023.153005

Nguyen, V. Q., Tran, K. N., & Nguyen, T. S. (2024). A study on hybrid recommend system combined sentiment analysis with matrix factorization. Ho Chi Minh City Open University Journal Of Science-Engineering And Technology, 14(2), 48-58. https://doi.org/10.46223/HCMCOUJS.tech.en.14.2.3270.2024

Pagano, T. P., Loureiro, R. B., Lisboa, F. V., Peixoto, R. M., Guimarães, G. A., Cruz, G. O., ... & Nascimento, E. G. (2023). Bias and unfairness in machine learning models: a systematic review on datasets, tools, fairness metrics, and identification and mitigation methods. Big data and cognitive computing, 7(1), 15. https://doi.org/10.3390/bdcc7010015

Pathak, S., Quraishi, S. J., Singh, A., Singh, M., Arora, K., & Ather, D. (2023, November). A comparative analysis of machine learning models: Svm, naive bayes, random forest, and lstm in predictive analytics. In 2023 3rd International Conference on Technological Advancements in Computational Sciences (ICTACS) (pp. 790-795). IEEE. https://doi.org/10.1109/ICTACS59847.2023.10390255

Reza, S. (2021). Bamboopreneur. Notion Press.

Rifaldy, F., Sibaroni, Y., & Prasetiyowati, S. S. (2025). Effectiveness of Word2Vec and TF-IDF in Sentiment Classification on Online Investment Platforms Using Support Vector Machine. JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), 10(2), 863-874. https://doi.org/10.29100/jipi.v10i2.6055

Sano, A. V. D., Stefanus, A. A., Madyatmadja, E. D., Nindito, H., Purnomo, A., & Sianipar, C. P. M. (2023). Proposing a visualized comparative review analysis model on tourism domain using Naïve Bayes classifier. Procedia Computer Science, 8. https://doi.org/10.1016/j.procs.2023.10.549

Sanwal, M., & Mazhar, M. M. (2023). Performance comparison of machine learning and deep learning models for sentiment analysis of hotel reviews. International Journal of Information Technology and Applied Sciences, 5(1), 2709–2208. https://doi.org/10.5281/zenodo.8225185

Sawarn, A., & Gupta, M. (2020). Comparative analysis of bagging and boosting algorithms for sentiment analysis. Procedia Computer Science, 173, 6. https://doi.org/10.1016/j.procs.2020.06.025

Sinha, A., Rout, B., Mohanty, S., Mishra, S. R., Mohapatra, H., & Dey, S. (2024). Exploring sentiments in the Russia-Ukraine conflict: A comparative analysis of KNN, decision tree and logistic regression machine learning classifiers. Procedia Computer Science, 9. https://doi.org/10.1016/j.procs.2024.04.101

Srivastava, S., Chakraborty, C., & Sarkar, M. K. (2024). Leveraging machine learning and dimensionality reduction for sports and exercise sentiment analysis. Measurement Sensors, 9. https://doi.org/10.1016/j.measen.2024.101182

Styawati, S., Nurkholis, A., Aldino, A. A., Samsugi, S., Suryati, E., & Cahyono, R. P. (2022, January). Sentiment analysis on online transportation reviews using Word2Vec text embedding model feature extraction and support vector machine (SVM) algorithm. In 2021 International Seminar on Machine Learning, Optimization, and Data Science (ISMODE) (pp. 163-167). IEEE. http://dx.doi.org/10.1109/ISMODE53584.2022.9742906

Yunyue, L., & Sikka, S. (2024). Endogenous Development and Creative Bamboo Handicraft Product Design in Yibin, China. The International Journal of Design in Society, 18(2), 151. https://doi.org/10.18848/2325-1328/CGP/v18i02/151-174

Published
2025-03-24
How to Cite
Agustine, G. E., & Jayadi, R. (2025). Sentiment Analysis of Bamboo Charcoal: Comparing Machine Learning Algorithms for Effective Insights. Journal La Multiapp, 6(2), 296-311. https://doi.org/10.37899/journallamultiapp.v6i2.2010