Woven Bag Production Scheduling With Heuristic Pour Algorithm and Earliest Due Date

  • Ajeng Afriza Department of Industrial Engineering, Faculty of Engineering and Science, National Development University ”Veteran” of East Java, Surabaya, Indonesia
  • Rr. Rochmoeljati Department of Industrial Engineering, Faculty of Engineering and Science, National Development University ”Veteran” of East Java, Surabaya, Indonesia
Keywords: Earliest Due Date, Heuristic pour scheduling, Production Scheduling, Woven Bag

Abstract

PT. XYZ is a company engaged in manufacturing, especially in producing woven bags, which are plastic sacks made of Polypropylene (PP). PT. XYZ faces the problem of too long makespan time in the application of the First Come First Serve (FCFS) method. Although considered simple, FCFS is less efficient in complex production, especially with variations in processing time. As a result, jobs with longer processing times are often prioritized, resulting in delays in shorter jobs. This causes a longer total completion time and requires the implementation of a more efficient scheduling method to minimize makespan and improve production performance. The purpose of this study was to determine the optimal woven bag production job and to reduce makespan and delays in woven bag production with the Heuristic Pour Algorithm and Earliest due date (EDD) at PT. XYZ. From the calculation results using the first come first serve method with the job sequence 1-2-3-4-5-6, the total makespan value was 33119 or 551 hours 59 minutes. Meanwhile, the calculation using the heuristic pour algorithm method and Earliest due date (EDD) obtained the sequence of jobs 3-2-4-1-6-5 with a total makespan of 28528 minutes or 475 hours 28 minutes. The calculation using EDD also showed a decrease in lateness for each job, where the lateness of job 3 was the smallest, namely -10 days with a due date of 17 days. Based on this research, the percentage decrease in makespan value was 13.86%.

References

Abdulzahra, A. M. K., Al-Qurabat, A. K. M., & Abdulzahra, S. A. (2023). Optimizing energy consumption in WSN-based IoT using unequal clustering and sleep scheduling methods. Internet of Things, 22, 100765. http://dx.doi.org/10.1016/j.iot.2023.100765

Agus, A., & Shukri Hajinoor, M. (2012). Lean production supply chain management as driver towards enhancing product quality and business performance: Case study of manufacturing companies in Malaysia. International Journal of Quality & Reliability Management, 29(1), 92-121. http://dx.doi.org/10.1108/02656711211190891

Ardiansyah, F., Yohanes, E. A., Radyanto, M. R., & Hayati, E. N. (2024). Perencanaan Dan Penjadwalan Produksi Pada Industri Motor. PT. Literasi Nusantara Abadi Grup.

Damayanti, R. A., Tastrawati, N. K. T., & Sari, K. (2023). Analisis Penjadwalan Produksi Menggunakan Metode Nawaz Enscore Ham (NEH) Dan Heuristic Pour Dalam Meminimumkan Total Waktu Produksi. E-Jurnal Matematika, 12(3), 216. https://doi.org/10.24843/mtk.2023.v12.i03.p422

Ɖurasević, M., & Jakobović, D. (2023). Heuristic and metaheuristic methods for the parallel unrelated machines scheduling problem: a survey. Artificial Intelligence Review, 56(4), 3181-3289. http://dx.doi.org/10.1007/s10462-022-10247-9

Febianti, E., & Mardiana, A. (2019). Penjadwalan Produksi Single Machine Pada Pipa Longitudinal Welding Mesin Erw 2 Di Pt. Xyz. Journal Industrial Servicess, 5(1), 23–29. https://doi.org/10.36055/jiss.v5i1.6495

Hasibuan, A., Islam, U., Utara, S., Ningtyas, C. P., Haluoleo, U., Tahendrika, A., Atma, U., Makassar, J., & Yunani, A. (2023). MANAJEMEN PRODUKSI & OPERASI. PT sada Kurnia Pustaka.

Hatim, H. A., & Ahmad, F. (2022). Pendekatan Algoritma Genetika Dalam Upaya Optimalisasi Penjadwalan Di Pt. Nuansa Indah. JISI: Jurnal Integrasi Sistem Industri, 9(2), 145. https://doi.org/10.24853/jisi.9.2.145-154

Jiang, T., Yu, Y., Jahanger, A., & Balsalobre-Lorente, D. (2022). Structural emissions reduction of China's power and heating industry under the goal of “double carbon”: A perspective from input-output analysis. Sustainable Production and Consumption, 31, 346-356.

Julyanthry, Siagian, V., Asmeati, Simanullang, A. H. R., Pandarangga, A. P., Purba, S. P. B., Pintauli, R. F., Rahmadana, M. F., & M, E. A. S. (2020). Manajemen Produksi dan Operasi. Yayasan Kita Menulis.

Khan, I. S., Ghafoor, U., & Zahid, T. (2021). Meta-heuristic approach for the development of alternative process plans in a reconfigurable production environment. IEEE Access, 9, 113508-113520. http://dx.doi.org/10.1109/ACCESS.2021.3104116

Łapczyńska, D., Łapczyński, K., Burduk, A., & Machado, J. (2022). Solving the problem of scheduling the production process based on heuristic algorithms. Journal of Universal Computer Science (JUCS), 28(3). http://dx.doi.org/10.3897/jucs.80750

Longo, F., Mirabelli, G., Nicoletti, L., & Solina, V. (2022). An ontology-based, general-purpose and Industry 4.0-ready architecture for supporting the smart operator (Part I–Mixed reality case). Journal of Manufacturing Systems, 64, 594-612. https://doi.org/10.1016/j.jmsy.2024.01.001

Mulya, M. F., Trisanto, D., & Rismawati, N. (2020). Analisis Dan Implementasi Metode Earliest Due Date (EDD) Untuk Meminimalisir Keterlambatan Dalam Proses Penjadwalan Perbaikan Kendaraan. Faktor Exacta, 13(3), 168–175. https://doi.org/10.30998/faktorexacta.v13i3.7254

Murad, S. A., Muzahid, A. J. M., Azmi, Z. R. M., Hoque, M. I., & Kowsher, M. (2022). A review on job scheduling technique in cloud computing and priority rule based intelligent framework. Journal of King Saud University-Computer and Information Sciences, 34(6), 2309-2331. http://dx.doi.org/10.1016/j.jksuci.2022.03.027

Nurdin, N., Novia, N., Rahman, A., & Suhada, R. (2019). Potensi Industri Produk Makanan Halal Di Kota Palu. Jurnal Ilmu Ekonomi Dan Bisnis Islam, 1(1), 1–12. https://doi.org/10.24239/jiebi.v1i1.1.1-12

Osman, A. I., Mehta, N., Elgarahy, A. M., Al-Hinai, A., Al-Muhtaseb, A. A. H., & Rooney, D. W. (2021). Conversion of biomass to biofuels and life cycle assessment: a review. Environmental chemistry letters, 19, 4075-4118. http://dx.doi.org/10.1007/s10311-021-01273-0

Qin, Z., & Lu, Y. (2021). Self-organizing manufacturing network: A paradigm towards smart manufacturing in mass personalization. Journal of Manufacturing Systems, 60, 35-47. http://dx.doi.org/10.1016/j.jmsy.2021.04.016

Rocholl, J., & Mönch, L. (2021). Decomposition heuristics for parallel-machine multiple orders per job scheduling problems with a common due date. Journal of the Operational Research Society, 72(8), 1737-1753. http://dx.doi.org/10.1080/01605682.2019.1640589

Rohaninejad, M., Tavakkoli-Moghaddam, R., Vahedi-Nouri, B., Hanzálek, Z., & Shirazian, S. (2022). A hybrid learning-based meta-heuristic algorithm for scheduling of an additive manufacturing system consisting of parallel SLM machines. International Journal of Production Research, 60(20), 6205-6225. http://dx.doi.org/10.1080/00207543.2021.1987550

Rudiawan, H., Kunci, K., & Produksi, M. (2021). Peranan Manajemen Produksi dalam Menyelaraskan Kinerja Perusahaan. Jurnal Manajemen FE-UB, 9(2), 66.

Safitri, M. D. A. (2019). Penjadwalan Produksi Untuk Meminimasi Keterlambatan Distribusi Dengan Metode Earliest Due Date. Prosiding SemNas Teknik UMAHA, 1, 48–55. https://doi.org/10.51804/prosiding.v1i0.665

Serrano-Ruiz, J. C., Mula, J., & Poler, R. (2021). Smart master production schedule for the supply chain: a conceptual framework. Computers, 10(12), 156. http://dx.doi.org/10.3390/computers10120156

Soori, M., Arezoo, B., & Dastres, R. (2023). Internet of things for smart factories in industry 4.0, a review. Internet of Things and Cyber-Physical Systems, 3, 192-204. https://doi.org/10.1016/j.iotcps.2023.04.006

Strahl, W. R., & Gounaris, C. E. (2023). A priority rule for scheduling shared due dates in the resource-constrained project scheduling problem. Computers & Industrial Engineering, 183, 109442. https://doi.org/10.1016/j.cie.2023.109442

Sudarso, A. (2022). Pemanfaatan Basis Data, Perangkat Lunak Dan Mesin Industri Dalam Meningkatkan Produksi Perusahaan (Literature Review Executive Support System (Ess) for Business). Jurnal Manajemen Pendidikan Dan Ilmu Sosial, 3(1), 1–14. https://doi.org/10.38035/jmpis.v3i1.838

Toyosito, R. E., Citra Ramadhanti, L., & Bustommy, A. Y. (2021). Penjadwalan Flow Shop dengan Metode Algoritma Heuristik Pour, Algoritma Campbell Dudek And Smith, Algoritma Tabu Search di Industri Porcelain Tableware. Jurnal JITES, 1(1). http://dx.doi.org/10.63494/jites.v1i1.10

Vlachos, I. P., Pascazzi, R. M., Zobolas, G., Repoussis, P., & Giannakis, M. (2023). Lean manufacturing systems in the area of Industry 4.0: A lean automation plan of AGVs/IoT integration. Production planning & control, 34(4), 345-358. http://dx.doi.org/10.1080/09537287.2021.1917720

Yazdani, M., Kabirifar, K., Fathollahi-Fard, A. M., & Mojtahedi, M. (2021). Production scheduling of off-site prefabricated construction components considering sequence dependent due dates. Environmental Science and Pollution Research, 1-17. https://doi.org/10.1007/s11356-021-16285-0

Zhang, F., Mei, Y., Nguyen, S., & Zhang, M. (2023). Survey on genetic programming and machine learning techniques for heuristic design in job shop scheduling. IEEE Transactions on Evolutionary Computation, 28(1), 147-167. http://dx.doi.org/10.1109/TEVC.2023.3255246

Zhang, Z. Q., Wu, F. C., Qian, B., Hu, R., Wang, L., & Jin, H. P. (2023). A Q-learning-based hyper-heuristic evolutionary algorithm for the distributed flexible job-shop scheduling problem with crane transportation. Expert Systems with Applications, 234, 121050. http://dx.doi.org/10.1016/j.eswa.2023.121050

Published
2025-06-30
How to Cite
Afriza, A., & Rochmoeljati, R. (2025). Woven Bag Production Scheduling With Heuristic Pour Algorithm and Earliest Due Date. Journal La Multiapp, 6(3), 548-559. https://doi.org/10.37899/journallamultiapp.v6i3.1971