A Survey of Soft Robot Actuation, Sensing, and Application
Abstract
Because of their fundamentally high adaptability, high compliance, excellent flexibility, and safe and natural interactive features, soft robotics technologies are pointing the path toward robotic capabilities that are essential for a wide range of applications, including manufacturing, manipulation, gripping, human-machine interaction, locomotion, and more. Soft robots are incredibly versatile and lightweight, making them ideal for interacting with delicate things and navigating unstructured spaces. Soft robots have not yet reached their full potential, though; in many aspects, including manipulation and movement, nature still possesses considerably greater sophistication. Future research should concentrate on comprehending the concepts behind the design and operation of soft robots in order to identify what constrains the way they function and impedes their transfer from the lab to real-world settings. Through an analysis of the operation of sophisticated actuation and sensor technologies, this paper offers a current overview of the area. Lastly, examples of the different soft actuators and possibilities for future development are reviewed, along with a number of prospective implementations.
References
Abdulshaheed, A. G., Hussein, M. B., Dzahir, M. A. M., & Saad, S. M. (2022). Modeling and analyzing of traveling wave gait of modular snake robot. In Recent Trends in Mechatronics Towards Industry 4.0: Selected Articles from iM3F 2020, Malaysia (pp. 141–152). Springer.
Abidi, H., Gerboni, G., Brancadoro, M., Fras, J., Diodato, A., Cianchetti, M., ... & Menciassi, A. (2018). Highly dexterous 2‐module soft robot for intra‐organ navigation in minimally invasive surgery. The International Journal of Medical Robotics and Computer Assisted Surgery, 14(1), e1875.
Akiyama, Y., Hoshino, T., Iwabuchi, K., & Morishima, K. (2012). Room temperature operable autonomously moving bio-microrobot powered by insect dorsal vessel tissue. PLoS ONE, 7(7), e38274.
Albu-Schaffer, A., Eiberger, O., Grebenstein, M., Haddadin, S., Ott, C., Wimbock, T., ... & Hirzinger, G. (2008). Soft robotics. IEEE Robotics & Automation Magazine, 15(3), 20-30.
Banerjee, S. S., Arief, I., Berthold, R., Wiese, M., Bartholdt, M., Ganguli, D., ... & Das, A. (2021). Super-elastic ultrasoft natural rubber-based piezoresistive sensors for active sensing interface embedded on soft robotic actuator. Applied Materials Today, 25, 101219.
Bartlett, N. W., Tolley, M. T., Overvelde, J. T., Weaver, J. C., Mosadegh, B., Bertoldi, K., ... & Wood, R. J. (2015). A 3D-printed, functionally graded soft robot powered by combustion. Science, 349(6244), 161-165.
Bernth, J. E., Arezzo, A., Liu, H. J. I. R., & Letters, A. (2017). A novel robotic meshworm with segment-bending anchoring for colonoscopy. Robotics and Letters, 2(3), 1718–1724.
Christianson, C., et al. (2019). Jellyfish-inspired soft robot driven by fluid electrode dielectric organic robotic actuators. Nature Communications, 6, 126. https://doi.org/10.1038/s41467-019-01376-6
Coulson, R., Stabile, C. J., Turner, K. T., & Majidi, C. (2022). Versatile soft robot gripper enabled by stiffness and adhesion tuning via thermoplastic composite. Soft Robotics, 9(2), 189–200.
Di Martino, M., Sessa, L., Diana, R., Piotto, S., & Concilio, S. (2023). Recent progress in photoresponsive biomaterials. Molecules, 28(9), 3712.
Dong, X., & Sitti, M. (2020). Controlling two-dimensional collective formation and cooperative behavior of magnetic microrobot swarms. The International Journal of Robotics Research, 39(5), 617–638.
Ebrahimi, N., Bi, C., Cappelleri, D. J., Ciuti, G., Conn, A. T., Faivre, D., ... & Jafari, A. (2021). Magnetic actuation methods in bio/soft robotics. Advanced Functional Materials, 31(11), 2005137.
Feng, H., Sun, Y., Todd, P. A., & Lee, H. P. (2020). Body wave generation for anguilliform locomotion using a fiber-reinforced soft fluidic elastomer actuator array toward the development of the eel-inspired underwater soft robot. Soft Robotics, 7(2), 233–250.
Georgopoulou, A., Clemens, F. J. F., & Electronics, P. (2022). Pellet-based fused deposition modeling for the development of soft compliant robotic grippers with integrated sensing elements. Flexible and Printed Electronics, 7(2), 025010.
Greco, C., Kotak, P., Pagnotta, L., & Lamuta, C. (2022). The evolution of mechanical actuation: From conventional actuators to artificial muscles. International Materials Reviews, 67(6), 575–619.
Gu, G., Zhang, N., Xu, H., Lin, S., Yu, Y., Chai, G., ... & Zhao, X. (2023). A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback. Nature biomedical engineering, 7(4), 589-598. https://doi.org/10.1126/scirobotics.adf3313
Guan, Q., Sun, J., Liu, Y., & Leng, J. J. S. S. T. (2020). Status of and trends in soft pneumatic robotics. Soft Science and Technology, 50, 897–934.
Qu, X., Li, J., Han, Z., Liang, Q., Zhou, Z., Xie, R., ... & Chen, S. (2023). Highly sensitive fiber pressure sensors over a wide pressure range enabled by resistive-capacitive hybrid response. ACS nano, 17(15), 14904-14915.
Homberg, B. S., Katzschmann, R. K., Dogar, M. R., & Rus, D. (2019). Robust proprioceptive grasping with a soft robot hand. Advanced Robotics, 43, 681–696.
Hongjun, M., Shupeng, Z., Wei, Z., & Yuke, R. (2024). Design and control of a new pneumatic quadruped soft robot based on honeycomb structure. IEEE Access.
Hu, W., Lum, G. Z., Mastrangeli, M., & Sitti, M. (2018). Small-scale soft-bodied robot with multimodal locomotion. Nature, 554(7690), 81–85.
Huang, W., Xu, Z., Xiao, J., Hu, W., Huang, H., & Zhou, F. (2020). Multimodal soft robot for complex environments using bionic omnidirectional bending actuator. IEEE Access, 8, 193827–193844.
Huang, X., Ford, M., Patterson, Z. J., Zarepoor, M., Pan, C., & Majidi, C. J. (2020). Shape memory materials for electrically-powered soft machines. Journal of Materials Chemistry B, 8(21), 4539–4551.
Hwang, J., Kim, J.-Y., & Choi, H. (2020). A review of magnetic actuation systems and magnetically actuated guidewire-and catheter-based microrobots for vascular interventions. Intelligent Service Robotics, 13, 1–14.
Jacob, A. C., & Secco, E. L. (2022). Design of a granular jamming universal gripper. In K. Arai & R. Bhatia (Eds.), Intelligent systems and applications: Proceedings of the 2021 Intelligent Systems Conference (IntelliSys) (Vol. 3, pp. 268–284). Springer. https://doi.org/10.1007/978-3-030-82199-1_20
Jager, E. W., Inganas, O., & Lundstrom, I. J. S. (2000). Microrobots for micrometer-size objects in aqueous media: Potential tools for single-cell manipulation. Science, 288(5475), 2335–2338.
Jing, L., Li, K., Yang, H., & Chen, P.-Y. (2020). Recent advances in integration of 2D materials with soft matter for multifunctional robotic materials. Materials Horizons, 7(1), 54–70.
Kaneko, T., Wang, Y. F., Hori, M., Sekine, T., Yoshida, A., Takeda, Y., ... & Tokito, S. (2023). Printed bilayer liquid metal soft sensors for strain and tactile perception in soft robotics. Advanced Materials Technologies, 8(17), 2300436.
Katzschmann, R. K., Marchese, A. D., & Rus, D. (2015). Hydraulic autonomous soft robotic fish for 3D swimming. In Experimental Robotics: The 14th International Symposium on Experimental Robotics (pp. 405–420). Springer.
Katzschmann, R. K., Marchese, A. D., & Rus, D. J. S. R. (2015). Autonomous object manipulation using a soft planar grasping manipulator. Soft Robotics, 2(4), 155–164.
Kim, H., Ahn, S. K., Mackie, D. M., Kwon, J., Kim, S. H., Choi, C., ... & Ko, S. H. (2020). Shape morphing smart 3D actuator materials for micro soft robot. Materials Today, 41, 243-269.
Kim, Y., & Zhao, X. (2022). Magnetic soft materials and robots. Chemical Reviews, 122(5), 5317–5364.
Lee, S., Franklin, S., Hassani, F. A., Yokota, T., Nayeem, M. O. G., Wang, Y., ... & Someya, T. (2020). Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science, 370(6519), 966-970.
Liu, X., Zhao, Y., Geng, D., Chen, S., Tan, X., & Cao, C. (2021). Soft humanoid hands with large grasping force enabled by flexible hybrid pneumatic actuators. Science Robotics, 8(2), 175–185. https://doi.org/10.1126/scirobotics.abc8142
Liu, Z., Wang, Y., Wang, J., Fei, Y., & Du, Q. (2022). An obstacle-avoiding and stiffness-tunable modular bionic soft robot. Robotica, 40(8), 2651–2665.
Loepfe, M., Schumacher, C. M., Lustenberger, U. B., & Stark, W. J. J. S. R. (2015). An untethered, jumping roly-poly soft robot driven by combustion. Science Robotics, 2(1), 33–41.
Mazzolai, B., & Laschi, C. J. S. R. (2020). A vision for future bioinspired and biohybrid robots. Science Robotics, 5(38), eaba6893.
McCracken, J. M., Donovan, B. R., & White, T. J. (2020). Materials as machines. Advanced Materials, 32(20), 1906564.
Dai, B., Zhang, Z., Li, L., Xu, H., Geng, D., Liu, H., ... & Kim, I. S. (2006, January). Study and manufacture of gain flattened S-band distributed dispersion compensation fiber Raman amplifier. In ICO20: Optical Information Processing (Vol. 6027, pp. 125-131). SPIE. https://doi.org/10.1117/12.667755
Mishra, R. B., Khan, S. M., Shaikh, S. F., Hussain, A. M., & Hussain, M. M. (2020). Low-cost foil/paper based touch mode pressure sensing element as artificial skin module for prosthetic hand. In 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft) (pp. 194–200). IEEE.
Morimoto, Y., Onoe, H., & Takeuchi, S. J. (2018). Biohybrid robot powered by an antagonistic pair of skeletal muscle tissues. Science Robotics, 3(18), eaat4440. https://doi.org/10.1126/scirobotics.aat4440
Müller, D., Veil, C., Seidel, M., & Sawodny, O. (2020). One-shot kinesthetic programming by demonstration for soft collaborative robots. Mechatronics, 70, 102418. https://doi.org/10.1016/j.mechatronics.2020.102418
Navarro, S. E., Nagels, S., Alagi, H., Faller, L. M., Goury, O., Morales-Bieze, T., ... & Duriez, C. (2020). A model-based sensor fusion approach for force and shape estimation in soft robotics. IEEE Robotics and Automation Letters, 5(4), 5621-5628.
Noviyanto, A. H., Septilianingtyas, L. D., & Rahmawati, D. (2021). Design of a continuous passive motion (CPM) machine for wrist joint therapy. Journal of Robotics and Control (JRC), 2(4), 311–315. https://doi.org/10.18196/jrc.v2i4.13267
Roels, E., Terryn, S., Iida, F., Bosman, A. W., Norvez, S., Clemens, F., ... & Brancart, J. (2022). Processing of self‐healing polymers for soft robotics. Advanced Materials, 34(1), 2104798.
Ruth, S. R. A., Beker, L., Tran, H., Feig, V. R., Matsuhisa, N., & Bao, Z. J. A. F. M. (2020). Rational design of capacitive pressure sensors based on pyramidal microstructures for specialized monitoring of biosignals. Advanced Functional Materials, 30(29), 1903100.
Sachyani Keneth, E., Kamyshny, A., Totaro, M., Beccai, L., & Magdassi, S. (2021). 3D printing materials for soft robotics. Advanced Materials, 33(19), 2003387.
Sareh, S., Noh, Y., Li, M., Ranzani, T., Liu, H., & Althoefer, K. (2015). Macrobend optical sensing for pose measurement in soft robot arms. Smart Materials and Structures, 24(12), 125024.
Scalet, G. (2020). Two-way and multiple-way shape memory polymers for soft robotics: An overview. Actuators, 9(1), 10. MDPI.
Shintake, J., Cacucciolo, V., Floreano, D., & Shea, H. J. A. M. (2018). Soft robotic grippers. Advanced Materials, 30(29), 1707035.
Shintake, J., Rosset, S., Schubert, B. E., Floreano, D., & Shea, H. (2016). Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Advanced Materials, 28(2), 231–238. https://doi.org/10.1002/adma.201504264
Su, H., Hou, X., Zhang, X., Qi, W., Cai, S., Xiong, X., & Guo, J. (2022, March). Pneumatic soft robots: Challenges and benefits. In Actuators (Vol. 11, No. 3, p. 92). MDPI.
Tapia, J., Knoop, E., Mutný, M., Otaduy, M. A., & Bächer, M. J. S. R. (2020). Makesense: Automated sensor design for proprioceptive soft robots. Science Robotics, 7(3), 332–345.
Terryn, S., Brancart, J., Lefeber, D., Van Assche, G., & Vanderborght, B. (2017). Self-healing soft pneumatic robots. Science Robotics, 2(9), eaan4268. https://doi.org/10.1126/scirobotics.aan4268
Teyssier, M., Parilusyan, B., Roudaut, A., & Steimle, J. (2021). Human-like artificial skin sensor for physical human-robot interaction. In 2021 IEEE International Conference on Robotics and Automation (ICRA) (pp. 3626–3633). IEEE.
Tony, A., Rasouli, A., Farahinia, A., Wells, G., Zhang, H., Achenbach, S., ... & Zhang, W. (2021, November). Toward a soft microfluidic system: concept and preliminary developments. In 2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP) (pp. 755-759). IEEE.
Toshimitsu, Y., Wong, K. W., Buchner, T., & Katzschmann, R. (2021). Sopra: Fabrication & dynamical modeling of a scalable soft continuum robotic arm with integrated proprioceptive sensing. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 653–660). IEEE.
Trimmer, B. A. J. S. R. (2020). Metal or muscle? The future of biologically inspired robots. Science Robotics, 5(38), eaba6149.
Truby, R. L., Della Santina, C., Rus, D. J. I. R., & Letters, A. (2020). Distributed proprioception of 3D configuration in soft, sensorized robots via deep learning. Robotics and Letters, 5(2), 3299–3306.
Truby, R. L., Wehner, M., Grosskopf, A. K., Vogt, D. M., Uzel, S. G., Wood, R. J., & Lewis, J. A. (2018). Soft somatosensitive actuators via embedded 3D printing. Advanced materials, 30(15), 1706383.
Walker, J., Zidek, T., Harbel, C., Yoon, S., Strickland, F. S., Kumar, S., & Shin, M. (2020, January). Soft robotics: A review of recent developments of pneumatic soft actuators. In Actuators (Vol. 9, No. 1, p. 3). MDPI.
Wang, J., Gao, D., & Lee, P. S. (2021). Recent progress in artificial muscles for interactive soft robotics. Advanced Materials, 33(19), 2003088.
Wang, Z., Kanegae, R., & Hirai, S. (2021). Circular shell gripper for handling food products. Soft Robotics, 8(5), 542–554.
Won, P., Ko, S. H., Majidi, C., Feinberg, A. W., & Webster-Wood, V. A. (2020). Biohybrid actuators for soft robotics: Challenges in scaling up. Actuators, 9(4), 96.
Xi, J., Schmidt, J. J., & Montemagno, C. D. (2005). Self-assembled microdevices driven by muscle. Nature Materials, 4(2), 180–184.
Xu, T., Zhu, H., Dai, S., Zhong, Y., Zhang, Z., Chen, S., ... & Ding, J. (2022). High-sensitivity flexible tri-axial capacitive tactile sensor for object grab sensing. Measurement, 202, 111876.
Yang, J. C., Kim, J. O., Oh, J., Kwon, S. Y., Sim, J. Y., Kim, D. W., ... & Park, S. (2019). Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature. ACS applied materials & interfaces, 11(21), 19472-19480. https://doi.org/10.1021/acsami.9b03261
Yasa, O., Toshimitsu, Y., Michelis, M. Y., Jones, L. S., Filippi, M., Buchner, T., & Katzschmann, R. K. (2023). An overview of soft robotics. Annual Review of Control, Robotics, and Autonomous Systems, 6(1), 1-29.
Yu, Q., Shang, W., Zhao, Z., Cong, S., Li, Z., & Li, A. S. (2020). Robotic grasping of unknown objects using novel multilevel convolutional neural networks: From parallel gripper to dexterous hand. IEEE Transactions on Automation Science and Engineering, 18(4), 1730–1741. https://doi.org/10.1109/TASE.2020.3000737
Zaidi, S., Maselli, M., Laschi, C., & Cianchetti, M. (2021). Actuation technologies for soft robot grippers and manipulators: A review. Current Robotics Reports, 2(3), 355–369.
Zhang, P., Lei, I. M., Chen, G., Lin, J., Chen, X., Zhang, J., ... & Liu, J. (2022). Integrated 3D printing of flexible electroluminescent devices and soft robots. Nature Communications, 13(1), 4775.
Zhang, Y. F., Zhang, N., Hingorani, H., Ding, N., Wang, D., Yuan, C., ... & Ge, Q. (2019). Fast‐response, stiffness‐tunable soft actuator by hybrid multimaterial 3D printing. Advanced Functional Materials, 29(15), 1806698. https://doi.org/10.1002/adfm.201806698
Zhou, J., Li, Z., Li, X., Wang, X., & Song, R. (2021). Human–robot cooperation control based on trajectory deformation algorithm for a lower limb rehabilitation robot. IEEE/ASME Transactions on Mechatronics, 26(6), 3128–3138. https://doi.org/10.1109/TMECH.2021.3064321
Copyright (c) 2025 Journal La Multiapp

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.