A Study of Rain Station Network Distribution Using Artificial Neural Networks
Abstract
Hydrological analysis is an important component in water resources management, especially for planning and controlling water infrastructure. This study evaluates the effectiveness of the rain station network in the Upper Ciliwung Watershed and identifies rain station with maximum accuracy in representing the study area conditions. Rainfall and discharge data were tested using statistical tests to ensure the absence of trends, stationary, persistence, and outliers. The evaluation of the rain station network density was conducted based on WMO guidelines, which determined the Upper Ciliwung Watershed met the criteria with a density of 37.981 km² per rain station. Analysis of rain station network distribution patterns using Artificial Neural Networks (ANN) was conducted with three data divisions (70-20-10, 60-25-15, 50-30-20) and tested at 100, 500, and 1000 epochs. The best results were obtained at 70-20-10 composition with 1000 epochs, showing the smallest relative error of 9.880% and NSE value of 0.983. The most effective rain station combinations are Gadog, Cilember, and Gunung Mas. This research provides recommendations in rain station network optimization to improve the accuracy of hydrological data.
References
Aji, Y. M. (2018). Analisa Kerapatan Jaringan Stasiun Hujan di Sub Das Kadalpang Kabupaten Pasuruan Menggunakan Metode Jaringan Saraf Tiruan dan Hubungannya terhadap Aspek Topografi (Doctoral dissertation, Universitas Brawijaya).
Anggraheni, E., Sutjiningsih, D., Emmanuel, I., Payrastre, O., & Andrieu, H. (2018). Assessing the role of spatial rainfall variability on watershed response based on weather radar data (A Case study of the Gard Region, France). International Journal of Technology, 9(3), 568–577. https://doi.org/10.14716/ijtech.v9i3.498
Arsyad. (2017). Modul Sistem Informasi Banjir Pelatihan Pengendalian Banjir. In Pusat Pendidikan dan Pelatihan Sumber Daya Air dan Konstruksi.
Atmakusuma, P. A., & Parikesit, D. (2018, May). Analysis of Layout of Yogyakarta Airport Railway Station and Its Integration with Tugu Railway Station. In Journal of the Civil Engineering Forum Vol (Vol. 4, No. 2). http://dx.doi.org/10.22146/jcef.33999
Cavus, M., Dissanayake, D., & Bell, M. (2025). Next Generation of Electric Vehicles: AI-Driven Approaches for Predictive Maintenance and Battery Management. Energies, 18(5), 1041. https://doi.org/10.3390/en18051041
dos Reis, A. A., Weerts, A., Ramos, M. H., Wetterhall, F., & dos Santos Fernandes, W. (2022). Hydrological data and modeling to combine and validate precipitation datasets relevant to hydrological applications. Journal of Hydrology: Regional Studies, 44, 101200. https://doi.org/10.1016/j.ejrh.2022.101200
Fathoni, S., Dermawan, V., & Suhartanto, E. (2016). Analisis Efektivitas Kerapatan Jaringan Pos Stasiun Hujan di DAS Kedungsoko dengan Menggunakan Jaringan Saraf Tiruan (Artificial Neural Network). Jurnal Teknik Pengairan: Journal of Water Resources Engineering, 7(1), 129-138.
Gao, P., Zheng, W., Liu, J., & Wu, D. (2025). Research on Modeling and Analysis Methods of Railway Station Yard Diagrams Based on Multi-Layer Complex Networks. Applied Sciences, 15(5), 2324. http://dx.doi.org/10.3390/app15052324
Hermawan, A. (2006). Jaringan Saraf Tiruan Teori dan Aplikasi. C.V Andi Offset.
Hu, L., & Evans, D. (2004, September). Localization for mobile sensor networks. In Proceedings of the 10th annual international conference on Mobile computing and networking (pp. 45-57). http://dx.doi.org/10.1145/1023720.1023726
Hussein, N. H., Yaw, C. T., Koh, S. P., Tiong, S. K., & Chong, K. H. (2022). A comprehensive survey on vehicular networking: Communications, applications, challenges, and upcoming research directions. IEEE Access, 10, 86127-86180. http://dx.doi.org/10.1109/ACCESS.2022.3198656
Johansson, K. (2007). Cost effective deployment strategies for heterogenous wireless networks (Doctoral dissertation, KTH).
Krajewski, W. F., Ghimire, G. R., Demir, I., & Mantilla, R. (2021). Real-time streamflow forecasting: AI vs. Hydrologic insights. Journal of Hydrology X, 13, 100110. https://doi.org/10.1016/j.hydroa.2021.100110
Pratama, D. C. (2023). Balancing Accessibility & Affordability in Indonesian Transit-Oriented Development Projects, Case Study: TOD Tanah Abang, Indonesia (Doctoral dissertation, Massachusetts Institute of Technology).
Prawati, E. (2016). Jaringan Stasiun Hujan Ditinjau Dari Topografi Pada Das Widas Kabupaten Nganjuk - Jawa Timur. 6(1), 86–98.
Prawati, E., & Dermawan, V. (2018). Rasionalisasi Jaringan Stasiun Hujan Menggunakan Metode Kagan Rodda Dengan Memperhitungkan Faktor Topografi Pada Das Sarokah Kabupaten Sumenep (Pulau Madura, Jawa Timur). 8(1), 79–90.
Setiawan, A. M., Koesmaryono, Y., Faqih, A., & Gunawan, D. (2018). Development of High Resolution Precipitation Extreme Dataset Using Spatial Interpolation Methods and Geostatistics in South Sulawesi Indonesia. Int. J. Sci. Basic Appl. Res, 42, 27-46.
Seyhan, E., Soenardi, P., & Sentot, S. (1990). Dasar-dasar Hidrologi. Yogyakarta. Gadjah Mada University Press.
WMO. (2020). Guide to Hydrological Practices, Volume I+II: Hydrology – From Measurement to Hydrological Information. Community. WMO. https://community.wmo.int/en/bookstore/guide-hydrological-practices-volume-iii-hydrology-measurement-hydrological-information
Zhu, S., Wei, J., Zhang, H., Xu, Y., & Qin, H. (2023). Spatiotemporal deep learning rainfall-runoff forecasting combined with remote sensing precipitation products in large scale basins. Journal of Hydrology, 616, 128727. https://doi.org/10.1016/j.jhydrol.2022.128727
Copyright (c) 2025 Journal La Multiapp

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.