Analysis and Comparison of Server Migration Performance on Amazon Web Services and Google Cloud Platform

  • Diva Nuranty Yovanka Telecommunication System, Universitas Pendidikan Indonesia, Purwakarta, Indonesia
  • Galura Muhammad Suranegara Telecommunication System, Universitas Pendidikan Indonesia, Purwakarta, Indonesia
  • Endah Setyowati Telecommunication System, Universitas Pendidikan Indonesia, Purwakarta, Indonesia
Keywords: Server Migration, Performance Comparison, Google Cloud Platform (GCP)

Abstract

Cloud computing has emerged as a technology increasingly embraced by numerous enterprises to operate servers with high availability. The multi-cloud strategy is increasingly employed to manage servers across various platforms, guaranteeing service continuity despite disruptions on any single platform. This study analyzes and compares the migration performance of Amazon Web Services (AWS) and Google Cloud Platform (GCP) across two scenarios: migration in a homogeneous environment and migration in a heterogeneous environment, utilizing the metrics of migration time and downtime. According to the research findings, in homogenous environment migration, GCP excelled in both migration duration and downtime. In heterogeneous environment migration, AWS demonstrated superior migration speed.

References

Aldossary, M. (2021). A Review of Dynamic Resource Management in Cloud Computing Environments. Computer Systems Science & Engineering, 36(3). http://dx.doi.org/10.32604/csse.2021.014975

Aruna, M. G., Hasan, M. K., Islam, S., Mohan, K. G., Sharan, P., & Hassan, R. (2022). Cloud to Cloud Data Migration Using Self Sovereign Identity for 5G and Beyond. Cluster Computing, 25(4), 2317–2331. https://doi.org/10.1007/s10586-021-03461-7

Aziz, M. A., Bhawiyuga, A., & Bakhtiar, F. A. (2020). Implementasi Container Live Migration Antar-Cloud Provider Menggunakan Podman dan CRIU. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 4(9), 3246–3254.

Aziz, W. A., & Awad, M. G. (2020). Network Function Virtualization Over Cloud-Disaster Recovery Solution Over Hybrid Cloud. International Journal of Simulation--Systems, Science & Technology, 21(4). https://doi.org/10.5013/IJSSST.a.21.04.15

Benjaponpitak, T., Karakate, M., & Sripanidkulchai, K. (2020). Enabling Live Migration of Containerized Applications Across Clouds. IEEE INFOCOM 2020-IEEE Conference on Computer Communications, 2529–2538. https://doi.org/10.1109/INFOCOM41043.2020.9155403

Bharany, S., Kaur, K., Badotra, S., Rani, S., Kavita, Wozniak, M., Shafi, J., & Ijaz, M. F. (2022). Efficient Middleware for The Portability of Paas Services Consuming Applications Among Heterogeneous Clouds. Sensors, 22(13), 5013. https://doi.org/10.3390/s22135013

Borra, P. (2024). An Overview of Cloud Computing and Leading Cloud Service Providers. International Journal of Computer Engineering and Technology (IJCET) Volume, 15, 122–133.

Carrasco, J., Durán, F., & Pimentel, E. (2020). Live migration of trans-cloud applications. Computer Standards & Interfaces, 69, 103392.

Fitriawati, N., Herdiansah, A., Taufiq, R., & Destriana, R. (2022). It Disaster Recovery Plan dalam Mendukung Business Continuity Plan Saat Terjadi Force Majeure. JIKA (Jurnal Informatika), 6(3), 249–255. http://dx.doi.org/10.31000/jika.v6i3.6320

Gundall, M., Stegmann, J., Reichardt, M., & Schotten, H. D. (2022). Downtime Optimized Live Migration of Industrial Real-Time Control Services. 2022 IEEE 31st International Symposium on Industrial Electronics (ISIE), 253–260. https://doi.org/10.1109/ISIE51582.2022.9831601

Günther, J., & Praeg, C.-P. (2023). Bedeutung und Management von Cloud Computing, Multi-Cloud und Cloud Brokerage in Unternehmen. HMD Praxis Der Wirtschaftsinformatik, 60(5), 959–974. https://doi.org/10.1365/s40702-023-00991-z

He, T., & Buyya, R. (2023). A Taxonomy of Live Migration Management in Cloud Computing. ACM Computing Surveys, 56(3), 1–33. https://doi.org/10.1145/3615353

John, W., Sargor, C., Szabo, R., Awan, A. J., Padala, C., Drake, E., Julien, M., & Opsenica, M. (2020). The Future of Cloud Computing Highly Distributed with Heterogeneous Hardware. Ericsson Technology Review, 2020(5), 2–13. https://doi.org/10.23919/ETR.2020.9904661

Kommisetty, P., & Abhireddy, N. (2024). Cloud Migration Strategies: Ensuring Seamless Integration and Scalability in Dynamic Business Environments. International Journal of Engineering and Computer Science, 13(04), 26146–26156.

Mafakhiri, J. (2019). Proses Migrasi Cloud Computing dari Lingkungan Amazon Ec2 Ke Vmware. Jurnal Bangkit Indonesia, 8(1), 1. https://doi.org/10.52771/bangkitindonesia.v8i1.85

Muthiah, N., Osmond, A. B., & Latuconsina, R. (2019). Live Migration pada Cloud Computing Berbasis Proxmox dengan Metode Pre-copy. EProceedings of Engineering, 6(1).

Najm, M., & Tamarapalli, V. (2022). Towards Cost-Aware VM Migration to Maximize The Profit in Federated Clouds. Future Generation Computer Systems, 134, 53–65. https://doi.org/10.1016/j.future.2022.03.020

Naseer, I. (2023). AWS Cloud Computing Solutions: Optimizing Implementation for Businesses. Statistics, Computing and Interdisciplinary Research, 5(2), 121–132. https://doi.org/10.52700/scir.v5i2.138

Neto, J. P. A., Pianto, D. M., & Ralha, C. G. (2019). MULTS: A Multi-Cloud Fault-Tolerant Architecture to Manage Transient Servers in Cloud Computing. Journal of Systems Architecture, 101, 101651. https://doi.org/10.1016/j.sysarc.2019.101651

Ranunegoro, A. F., Dewanta, F., & Aditya, B. (2023). Implementasi dan Analisis Migrasi Data LMS pada Klaster Kubernetes Antar-Public Cloud Menggunakan Backup dan Restore. MULTINETICS, 9(1), 71–78. https://doi.org/10.32722/multinetics.v9i1.5556

Regaieg, R., Koubàa, M., Ales, Z., & Aguili, T. (2021). Multi-Objective Optimization for VM Placement in Homogeneous and Heterogeneous Cloud Service Provider Data Centers. Computing, 103, 1255–1279. https://doi.org/10.1007/s00607-021-00915-z

Rezazadeh, A., Abednezhad, D., & Lutfiyya, H. (2022). MiGrror: Mitigating downtime in mobile edge computing, an extension to live migration. Procedia Computer Science, 203, 41–50. https://doi.org/10.1016/j.procs.2022.07.008

Singh, G., Singh, P., Motii, A., & Hedabou, M. (2024). A Secure and Lightweight Container Migration Technique in Cloud Computing. Journal of King Saud University-Computer and Information Sciences, 36(1), 101887. https://doi.org/10.1016/j.jksuci.2023.101887

Singh, H., Tyagi, S., Kumar, P., Gill, S. S., & Buyya, R. (2021). Metaheuristics for Scheduling of Heterogeneous Tasks in Cloud Computing Environments: Analysis, Performance Evaluation, and Future Directions. Simulation Modelling Practice and Theory, 111, 102353. https://doi.org/10.1016/j.simpat.2021.102353

Tziritas, N., Loukopoulos, T., Khan, S. U., Xu, C.-Z., & Zomaya, A. Y. (2019). Online Live VM Migration Algorithms to Minimize Total Migration Time and Downtime. 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), 406–417. https://doi.org/10.1109/IPDPS.2019.00051

Utama, M. G. W., Latuconsina, R., & Ruriawan, M. F. (2020). Live Migration pada Cloud Computing dengan Metode Post-Copy. EProceedings of Engineering, 7(2).

Wulandari, R. M. N., Dewanta, F., & Irawan, A. I. (2023). Analisis Performa Live Migration pada Cloud Computing dengan Metode Hybrid Menggunakan Openstack. EProceedings of Engineering, 9(6).

Published
2024-12-30
How to Cite
Yovanka, D. N., Suranegara, G. M., & Setyowati, E. (2024). Analysis and Comparison of Server Migration Performance on Amazon Web Services and Google Cloud Platform. Journal La Multiapp, 5(6), 898-909. https://doi.org/10.37899/journallamultiapp.v5i6.1824