Study of Gurney Flap as Passive Flow Control Method on NACA 4418
Abstract
Global problems related to the greenhouse effect and global warming have pushed research towards clean energy sources. One of the technologies of concern is wind turbines, whose performance is highly dependent on the aerodynamics of the airfoils used. This study aims to analyze the effect of input speed variation on the aerodynamic performance of NACA 4418 airfoil using gurney flap as a passive flow method. In this study, the Reynolds Averaged Navier-Stokes (RANS) method was used to calculate aerodynamic parameters, by varying the height of the gurney flap on the trailing edge of the airfoil. The results showed that the use of gurney flaps with flap height variations of 1%, 2%, and 3% of chord length was able to significantly increase the lift coefficient, with the highest increase at the flap height of 3% c. In addition, this passive method has proven to be efficient in improving aerodynamic performance without the addition of an active control system. In conclusion, variations in input speed and flap height can improve the aerodynamic performance of NACA 4418 airfoils, making this method feasible to apply to wind turbines.
References
Aftab, S. M. A., Rafie, A. S. M., Razak, N. A., & Ahmad, K. A. (2016). Turbulence model selection for low reynolds number flows. PLoS ONE, 11(4), 1–15. https://doi.org/10.1371/journal.pone.0153755
Airfoils in General. (2017). Dynamic Flight. http://www.dynamicflight.com/aerodynamics/airfoils/
Alber, J., Pechlivanoglou, G., Paschereit, C. O., Twele, J., & Weinzierl, G. (2017). PARAMETRIC INVESTIGATION OF GURNEY FLAPS FOR THE USE ON WIND TURBINE BLADES. http://www.asme.org/about-asme/terms-of-use
Ansari, S. U., Hussain, M., Mazhar, S., Manzoor, T., Siddiqui, K. J., Abid, M., & Jamal, H. (2019). Mesh partitioning and efficient equation solving techniques by distributed finite element methods: A survey. Archives of Computational Methods in Engineering, 26, 1-16. https://doi.org/10.1007/s11831-017-9227-2
Basta, E., Ghommem, M., Romdhane, L., & Abdelkefi, A. (2020). Modeling and experimental comparative analysis on the performance of small-scale wind turbines. Wind and Structures An International Journal, 30, 261–273. https://doi.org/10.12989/was.2020.30.3.261
Boache, P. J. (1994). Perspective: A method for uniform reporting of grid refinement studies. Journal of Fluids Engineering, Transactions of the ASME, 116(3), 405–413. https://doi.org/10.1115/1.2910291
Chen, L., Yang, P., Zhang, B., & Chen, L. (2023). Aerodynamic Enhancement of Vertical-Axis Wind Turbines Using Plain and Serrated Gurney Flaps. Applied Sciences, 13(23), 12643. https://doi.org/10.3390/app132312643
Douvi C. Eleni. (2012). Evaluation of the turbulence models for the simulation of the flow over a National Advisory Committee for Aeronautics (NACA) 0012 airfoil. Journal of Mechanical Engineering Research, 4(3). https://doi.org/10.5897/jmer11.074
Gao, X. W., Gao, L. F., Zhang, Y., Cui, M., & Lv, J. (2019). Free element collocation method: A new method combining advantages of finite element and mesh free methods. Computers & Structures, 215, 10-26. https://doi.org/10.1016/j.compstruc.2019.02.002
González-Salcedo, Á., Croce, A., Arce León, C., Nayeri, C. N., Baldacchino, D., Vimalakanthan, K., & Barlas, T. (2020). Blade design with passive flow control technologies. Handbook of Wind Energy Aerodynamics, 1-57. https://doi.org/10.1007/978-3-030-05455-7_6-1
Graham, M., Muradian, A., & Traub, L. W. (2018). Experimental study on the effect of gurney flap thickness on airfoil performance. Journal of Aircraft, 55(2), 897–902. https://doi.org/10.2514/1.C034547
Hao, L. S., & Gao, Y. W. (2019). Effect of Gurney Flap Geometry on a S809 Airfoil. International Journal of Aerospace Engineering, 2019. https://doi.org/10.1155/2019/9875968
He, X., Wang, J. J., Yang, M. Q., Ma, D. L., Yan, C., & Liu, P. Q. (2017). Numerical simulation of gurney flaps lift-enhancement on a low reynolds number airfoil. Science China Technological Sciences, 60(10), 1548–1559. https://doi.org/10.1007/s11431-017-9085-4
James Julian, Mirza Fauzan Lukiano, Fitri Wahyuni, Waridho Iskandar, & Nely Toding Bunga. (2024). Numerical Analysis of Gurney Flap Impact on NACA 4415 Airfoil Aerodynamics Performance. Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi, 6, 121–132. https://doi.org/10.35814/asiimetrik.v6i1.5722
Julian, J., Iskandar, W., & Wahyuni, F. (2023). ANALYSIS OF AERODYNAMIC PERFORMANCE OF EROSION AIRFOIL WITH REYNOLDS NUMBER VARIATIONS. Jurnal Ilmiah Teknologi Dan Rekayasa, 28(2), 102–116. https://doi.org/10.35760/tr.2023.v28i2.8299
Kougias, I., Aggidis, G., Avellan, F., Deniz, S., Lundin, U., Moro, A., ... & Theodossiou, N. (2019). Analysis of emerging technologies in the hydropower sector. Renewable and Sustainable Energy Reviews, 113, 109257. https://doi.org/10.1016/j.rser.2019.109257
Lew, A. J., Buscaglia, G. C., & Carrica, P. M. (2001). A Note on the Numerical Treatment of the k-epsilon Turbulence Model. International Journal of Computational Fluid Dynamics, 14(3), 201–209. https://doi.org/10.1080/10618560108940724
Li, Y. C., Wang, J. J., Tan, G. K., & Zhang, P. F. (2002). Effects of Gurney flaps on the lift enhancement of a cropped nonslender delta wing. Experiments in Fluids, 32(1), 99–105. https://doi.org/10.1007/s003480200010
Liang, D., Bai, W., Chen, W., & Chyu, M. K. (2020). Investigating the effect of element shape of the face-centered cubic lattice structure on the flow and endwall heat transfer characteristics in a rectangular channel. International Journal of Heat and Mass Transfer, 153, 119579. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119579
Lu, M., Zhang, X., Ji, J., Xu, X., & Zhang, Y. (2020). Research progress on power battery cooling technology for electric vehicles. Journal of Energy Storage, 27, 101155. https://doi.org/10.1016/j.est.2019.101155
Lukiano, M. F., Julian, J., Wahyuni, F., & Iskandar, W. (2023). The Influence of Mounting Angle on Gurney Flap on The Aerodynamics Performance of NACA 0015 Using CFD Method. International Journal of Marine Engineering Innovation and Research, 8(4), 694–702. https://doi.org/10.12962/j25481479.v8i4.18891
Mahato, A., Kant Singh, R., Barnwal, R., & Chandra Rana, S. (2023). Aerodynamic characteristics of NACA 0012 vs. NACA 4418 airfoil for wind turbine applications through CFD simulation. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.05.439
Manerikar, S. S., Damkale, S. R., Havaldar, S. N., Kulkarni, S. V., & Keskar, Y. A. (2021, June). Horizontal axis wind turbines passive flow control methods: a review. In IOP Conference Series: Materials Science and Engineering (Vol. 1136, No. 1, p. 012022). IOP Publishing. https://doi.org/10.1088/1757-899X/1136/1/012022
Nakhchi, M. E., Naung, S. W., & Rahmati, M. (2021). High-resolution direct numerical simulations of flow structure and aerodynamic performance of wind turbine airfoil at wide range of Reynolds numbers. Energy, 225, 120261. https://doi.org/10.1016/j.energy.2021.120261
No, R. (1931). The National Advisory Committee for Aeronautics. Science, 74(1923), 451. https://doi.org/10.1126/science.74.1923.451
Omer, A. M. (2008). Green energies and the environment. Renewable and Sustainable Energy Reviews, 12(7), 1789–1821. https://doi.org/https://doi.org/10.1016/j.rser.2006.05.009
Parluhutan, Y. M., Fahrudin, F., & Rhakasywi, D. (2024). Investigating the Impact of Plain Flap as Lift Enhancement on Symmetrical Airfoils. International Journal of Marine Engineering Innovation and Research, 9(1), 97–104. https://doi.org/10.12962/j25481479.v9i1.19848
Rayhan Fariansyah Billad, James Julian, Fitri Wahyuni, Waridho Iskandar, & Nely Toding Bunga. (2024). Numerical Modelling of NACA 0015 Airfoil Under the Erosion Condition. Jurnal Asiimetrik: Jurnal Ilmiah Rekayasa & Inovasi, 6, 133–142. https://doi.org/10.35814/asiimetrik.v6i1.5875
Copyright (c) 2024 Journal La Multiapp

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.