Sentiment Analysis of Support for the DPR's Right to Inquiry on the Issue of 2024 Election Fraud Using the Support Vector Machine Method
Abstract
This research aims to analyze public sentiment towards supporting the DPR's right to inquiry in the 2024 Election fraud issue using the Support Vector Machine (SVM) method. Data was obtained from the social media application X which has a wide user base and is relevant to the issue under study. Comments on the application are classified into positive and negative sentiments after going through the pre-processing stage. The SVM method was chosen because of its high ability in text classification based on appropriate kernels. This research shows how much influence the X application has in identifying public sentiment and the effectiveness of the SVM method in sentiment classification. It is hoped that the research results will provide in-depth insight into public sentiment regarding the issue of fraud in the 2024 elections and support better decision making in the context of politics and democracy in Indonesia.
References
Adhi Putra, A. D. (2021). Analisis Sentimen pada Ulasan pengguna Aplikasi Bibit Dan Bareksa dengan Algoritma KNN. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 8(2), 636–646. https://doi.org/10.35957/jatisi.v8i2.962
Adiba, F. I., Islam, T., & Kaiser, M. S. (2020). Effect of Corpora on Classification of Fake News using Naive Bayes Classifier. Int J Auto AI Mach Learn, 1(1), 80.
Afrizal, S., Irmanda, H. N., Falih, N., & Isnainiyah, I. N. (2020). Implementasi Metode Naive Bayes untuk Analisis Sentimen Warga Jakarta Terhadap. Informatik : Jurnal Ilmu Komputer, 15(3), 157.
Bs, D. A., & Fadhlillah, M. R. (2023). The Development of General Elections and Regional Head Elections After the Reformasi Era. Journal of Law, Politic and Humanities, 3(3), 311-318. https://doi.org/10.38035/jlph.v3i3.221
Diamantina, A. (2018, July). Duties and Functions of the Complementary Organs as Performance Support of the Regional Representative Council. In IOP Conference Series: Earth and Environmental Science (Vol. 175, No. 1, p. 012167). IOP Publishing. Https://doi.org/10.1088/1755-1315/175/1/012167
Gifari, O. I., Adha, M., Freddy, F., & Durrand, F. F. S. (2022). Analisis Sentimen Review Film Menggunakan TF-IDF dan Support Vector Machine. Journal of Information Technology, 2(1), 36–40. https://doi.org/10.46229/jifotech.v2i1.330
Hasibuan, M. S., & Suhardi. (2022). Analisis Sentimen Kebijakan Vaksin Covid-19 Menggunakan SVM dan C4.5. Jurnal Teknik Elektro Dan Komputer TRIAC, 19–21.
Hasugian, A. H., Fakhriza, M., & Zukhoiriyah, D. (2023). Analisis Sentimen Pada Review Pengguna E-Commerce Menggunakan Algoritma Naïve Bayes. J-SISKO TECH (Jurnal Teknologi Sistem Informasi Dan Sistem Komputer TGD), 6(1), 98. https://doi.org/10.53513/jsk.v6i1.7400
Panggabean, D. (2022). Implementasi Hak Angket Dewan Perwakilan Rakyat Dalam Melakukan Kontrol Atas Kebijakan Pemerintah. Nommensen Journal of Legal Opinion, 31-44.
Puad, S., Garno, G., & Susilo Yuda Irawan, A. (2023). Analisis Sentimen Masyarakat Pada Twitter Terhadap Pemilihan Umum 2024 Menggunakan Algoritma Naïve Bayes. JATI (Jurnal Mahasiswa Teknik Informatika), 7(3), 1560–1566. https://doi.org/10.36040/jati.v7i3.6920
Purnamawati, E. (2019). Kekuasaan Dewan Perwakilan Rakyat Dalam Penggunaan Hak Angket Menurut Undang-Undang Dasar 1945. Solusi, 17(3), 303–316. https://doi.org/10.36546/solusi.v17i3.219
Putra, M. P. R., & Wardani, K. R. N. (2020). Penerapan Text Mining Dalam Menganalisis Kepribadian Pengguna Media Sosial. JUTIM (Jurnal Teknik Informatika Musirawas), 5(1), 63–71. https://doi.org/10.32767/jutim.v5i1.791
Putri, D. D., Nama, G. F., & Sulistiono, W. E. (2022). Analisis Sentimen Kinerja Dewan Perwakilan Rakyat (DPR) pada Twitter Menggunakan Metode Naive Bayes Classifier. Jurnal Informatika dan Teknik Elektro Terapan, 10(1), 34-39. https://doi.org/10.23960/jitet.v10i1.2262
Simamora, J., & Siallagan, H. (2020). Hans Kelsen’s Thoughts On The Authority Model Of The Constitutional Of Indonesia. Journal of Talent Development and Excellence, 12(1), 4411-4415.
Singh, N. K., Tomar, D. S., & Sangaiah, A. K. (2020). Sentiment analysis: a review and comparative analysis over social media. Journal of Ambient Intelligence and Humanized Computing, 11(1), 97-117. https://doi.org/10.1007/s12652-018-0862-8
Taswin, W. (2022, November). Institutional Strengthening, Function and Authority of Regional Representative Council of Republic Indonesia In The Establishment of Law. In Proceeding International Conference on Law, Economy, Social and Sharia (ICLESS) (Vol. 1, No. 1, pp. 445-469).
Wenando, F. A., & Fuad, E. (2019). Detection of Hate Speech in Indonesian Language on Twitter Using Machine Learning Algorithm. Prosiding CELSciTech, 4, 6-8.
Yu, M., Huang, Q., Qin, H., Scheele, C., & Yang, C. (2020). Deep learning for real-time social media text classification for situation awareness–using Hurricanes Sandy, Harvey, and Irma as case studies. In Social Sensing and Big Data Computing for Disaster Management (pp. 33-50). Routledge. https://doi.org/10.1080/17538947.2019.1574316
Copyright (c) 2024 Journal La Multiapp

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.