Analysis of Calorific Value of Biopellet Diameter Variations through Proximate Test

  • Nadia Putri Asrianti Mechanical Engineering Department, Faculty of Engineering, Universitas Pembangunan Nasional Veteran Jakarta
  • Fahrudin Mechanical Engineering Department, Faculty of Engineering, Universitas Pembangunan Nasional Veteran Jakarta
  • Damora Rhakasywi Mechanical Engineering Department, Faculty of Engineering, Universitas Pembangunan Nasional Veteran Jakarta
  • Budhi Martana Mechanical Engineering Department, Faculty of Engineering, Universitas Pembangunan Nasional Veteran Jakarta
Keywords: Biopellet, Calorific Value, Proximate Analysis, Density

Abstract

This study aims to evaluate the quality of biopellets as biomass energy fuel, focusing on physical and chemical characteristics based on the SNI 8021:2014 standard. The research method used is experimental with a non-factorial Completely Randomized Design (CRD). The raw materials used are a mixture of rambutan wood waste (Nephelium lappaceum L) and bintaro (Cerbera manghas) with tapioca flour as an organic binder. Testing includes proximate analysis (moisture, ash, volatile matter, and fixed carbon) and calorific value using an oxygen bomb calorimeter. The results show that the produced biopellets meet several parameters of the SNI 8021:2014 standard, such as moisture content, volatile matter, and fixed carbon. However, there is significant variation in ash test results among different diameters of biopellets tested. ANOVA test results indicate that mold diameter has a notation that has a significantly affect several biopellet characteristics, such as density and calorific value. This study also observed the potential for increased combustion efficiency of the produced biopellets. The results indicate that the raw material mixture used can reduce pollutant emissions during combustion. The conclusion of this study is that the use of a mixture of rambutan wood waste and bintaro with tapioca flour as an organic binder can produce biopellets with quality that meets standards for biomass energy applications.

References

Akkaya, A. V. (2009). Proximate analysis based multiple regression models for higher heating value estimation of low rank coals. Fuel Processing Technology, 90(2), 165–170. https://doi.org/10.1016/j.fuproc.2008.08.016

Akkaya, E. (2016). ANFIS based prediction model for biomass heating value using proximate analysis components. Fuel, 180, 687–693. https://doi.org/10.1016/j.fuel.2016.04.112

Amri, I., Cahyono, A. A., & Bahruddin. (2022). Upgrading characteristics of empty fruit bunch biopellet with addition of bintaro fruit as co-firing. Journal of Bioprocess, Chemical, Environmental Engineering and Science, 2(2), 1–8. https://doi.org/10.31258/jbchees.3.1.1-8

Chen, W. H., & Kuo, P. C. (2010). A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy, 35(6), 2580–2586. https://doi.org/10.1016/j.energy.2010.02.054

Damayanti, A., Musfiroh, R., & Andayani, N. (2021). The effect of tapioca flour adhesives to the biopellet characteristics of rice husk waste as renewable energy. IOP Conference Series: Earth and Environmental Science, 700(1). https://doi.org/10.1088/1755-1315/700/1/012028

Demirbas, A. (2004). Combustion characteristics of different biomass fuels. Progress in Energy and Combustion Science, 30(2), 219–230. https://doi.org/10.1016/j.pecs.2003.10.004

Demirbas, M. F., Balat, M., & Balat, H. (2009). Potential contribution of biomass to the sustainable energy development. Energy Conversion and Management, 50(7), 1746–1760. https://doi.org/10.1016/j.enconman.2009.03.013

Dirgantara, M., Karelius, K., & Ariyanti, M. D., Tamba, S. A. K. (2020). Evaluasi prediksi higher heating value (HHV) biomassa berdasarkan analisis proksimat. Risal. Fisika, 4(1), 1–7. https://doi.org/10.35895/rf.v4i1.166

Gheorghe, D., & Neacsu, A. (2024). The influence of additives upon the energetic parameters and physicochemical properties of environmentally friendly biomass pellets. Chemical Society Journal, 68(3), 438–454. Retrieved from http://dx.doi.org/10.29356/jmcs.v68i3.2032

Gori, M., Bergfeldt, B., Reichelt, J., & Sirini, P. (2013). Effect of natural ageing on volume stability of MSW and wood waste incineration residues. Waste Management, 33(4), 850–857. https://doi.org/10.1016/j.wasman.2012.12.005

Herwanda, A. E. (2016). Kajian proses pemurnian minyak biji bintaro (Cerbera Manghas L) sebagai bahan bakar nabati. IPB University. Retrieved from http://repository.ipb.ac.id/handle/123456789/51164

Imanningsih, N. (2012). Profil gelatinisasi beberapa formulasi tepung-tepungan untuk pendugaan sifat pemasakan. Penelitian Gizi dan Makanan, 35(1), 13–22. https://doi.org/10.22435/pgm.v35i1.3079.13-22

Jacob, G., Hasan, H., & Winarno, A. (2021). Karakteristik campuran batubara dengan arang gergaji kayu meranti dalam pembuatan briket batubara di kota Samarinda, Kalimantan Timur. Jurnal Teknologi Mineral FT UNMUL, 9(1), 27–32.

Lutfi, M., Syahbana, & Gunomo. (2013). Rancang bangun dan uji kinerja tungku biomassa dengan bahan bakar kayu. Journal of Chemical Information and Model, 53(9), 1689–1699.

Musdja, M. Y., Chadidjah, & Djajanegara, I. (2019). Antibacterial activity of dichloromethane and ethyl acetate extracts of bintaro leaf (Cerbera manghas, linn) against Staphylococcus aureus and Escherichia coli. International Journal of Current Research, 11(1), 398–402. https://doi.org/10.24941/ijcr.33901.01.2019

Mustamu, S., & Pattiruhu, G. (2018). Pembuatan biopelet dari kayu putih dengan penambahan gondorukem sebagai bahan bakar alternatif. Jurnal Hutan Pulau-Pulau Kecil, 2(1), 91–100. https://doi.org/10.30598/jhppk.2018.2.1.91

Nosek, R., Holubcik, M., & Jandacka, J. (2016). The impact of bark content of wood biomass on biofuel properties. BioResources, 11(1), 44–53. https://doi.org/10.15376/biores.11.1.44-53

Rudolfsson, M. (2016). Characterization and densification of carbonized lignocellulosic biomass.

Sharma, M. K., Priyank, G., & Sharma, N. (2015). Biomass Briquette Production: A propagation of non-convention technology and future of pollution free thermal energy sources. American Journal of Engineering Research (AJER), 4(02), 44–50.

Ståhl, M., & Berghel, J. (2011). Energy efficient pilot-scale production of wood fuel pellets made from a raw material mix including sawdust and rapeseed cake. Biomass and Bioenergy, 35(12), 4849–4854. https://doi.org/10.1016/j.biombioe.2011.10.003

Sukarta, I. N., & Ayuni, P. S. (2016). Analisis proksimat dan nilai kalor pada pellet biosolid yang dikombinasikan dengan biomassa limbah bambu. Jurnal Sains dan Teknologi, 5(1), 752–761. https://doi.org/10.23887/jst-undiksha.v5i1.8278

Sutrisno, S., Rahmi, R., Marlinda, L., Al Muttaqii, M., Afrila, C. D., Fasmawi, Y., & Evrianti, Y. (2022). A Mass Ratio of Hierarchical H-ZSM5 And Fatty Acid Methyl Ester of Cerbera Manghas Oil and The Effect on The Hydrocarbon Liquid Product Composition. IPTEK The Journal for Technology and Science, 33(3), 190-200. https://doi.org/10.12962/j20882033.v33i3.14200

Suwaedi, O. (2018). Pemanfaatan limbah serbuk gergaji sebagai bahan dasar pembuatan briket. Biosel: Biologi dan Pendidikan Biologi, 7(2), 204. https://doi.org/10.33477/bs.v7i2.656

Syarief, A., Nugraha, A., & Ramadhan, M. N. (2021). Variasi komposisi dan jenis perekat terhadap sifat fisik dan karakteristik pembakaran briket limbah arang kayu alaban. Prosiding Seminar Nasional Limbah B3, 6(April), 1–12.

Published
2024-08-31
How to Cite
Asrianti, N. P., Fahrudin, F., Rhakasywi, D., & Martana, B. (2024). Analysis of Calorific Value of Biopellet Diameter Variations through Proximate Test. Journal La Multiapp, 5(4), 488-500. https://doi.org/10.37899/journallamultiapp.v5i4.1516