Prototype of Microcontroller Based Water Pump Control System for Lettuce Plants Using Fuzzy Tsukamoto

  • Mhd. Roji Rifansyah Program Studi Ilmu Komputer, Fakultas Sains Dan Teknologi, Universitas Islam Negeri Sumatera Utara, Medan
  • Rakhmat Kurniawan R Program Studi Ilmu Komputer, Fakultas Sains Dan Teknologi, Universitas Islam Negeri Sumatera Utara, Medan
Keywords: Microcontroller, Water Pump Control System, Lettuce Plants, Fuzzy Tsukamoto Method

Abstract

This research aims to design and implement a water pump control system for lettuce plants using a microcontroller based on the Tsukamoto fuzzy method. The system utilizes soil moisture sensors and DHT11 temperature sensors to monitor and control the water supply for optimal plant growth. The fuzzy logic control involves three stages: fuzzification, rule evaluation, and defuzzification. Experimental results demonstrate the system's effectiveness in maintaining the desired soil moisture levels, thus ensuring optimal conditions for lettuce plant development. The prototype includes components such as Arduino Uno, relays, water pumps, and LCD displays, all of which integrate seamlessly to achieve the desired control outcomes. The study concludes that the designed system can significantly aid in automating water supply processes, thus benefiting small-scale agricultural practices.

References

Abdullah, N., Durani, N. A. B., Shari, M. F. B., Siong, K. S., Hau, V. K. W., Siong, W. N., & Ahmad, I. K. A. (2020). Towards smart agriculture monitoring using fuzzy systems. Ieee Access, 9, 4097-4111. https://doi.org/10.1109/ACCESS.2020.3041597

Afrin, M., Jin, J., Rahman, A., Gasparri, A., Tian, Y. C., & Kulkarni, A. (2021). Robotic edge resource allocation for agricultural cyber-physical system. IEEE Transactions on Network Science and Engineering, 9(6), 3979-3990. https://doi.org/10.1109/TNSE.2021.3103602

Ahluwalia, O., Singh, P. C., & Bhatia, R. (2021). A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria. Resources, Environment and Sustainability, 5, 100032. https://doi.org/10.1016/j.resenv.2021.100032

Ahmed, M., Hasanuzzaman, M., Raza, M. A., Malik, A., & Ahmad, S. (2020). Plant nutrients for crop growth, development and stress tolerance. Sustainable agriculture in the era of climate change, 43-92. https://doi.org/10.1007/978-3-030-45669-6_3

Ariananda, B., Nopsagiarti, T., & Mashadi, M. (2020). Pengaruh pemberian berbagai konsentrasi larutan nutrisi AB mix terhadap pertumbuhan dan produksi selada (Lactuca sativa L.) hidroponik sistem floating. Green Swarnadwipa: Jurnal Pengembangan Ilmu Pertanian, 9(2), 185-195.

Dharma, I. P. L., Tansa, S., & Nasibu, I. Z. (2019). Perancangan Alat Pengendali Pintu Air Sawah Otomatis dengan SIM800l Berbasis Mikrokontroler Arduino Uno. Jurnal Teknik, 17(1), 40–56. https://doi.org/10.37031/jt.v17i1.25

El-Beltagi, H. S., Basit, A., Mohamed, H. I., Ali, I., Ullah, S., Kamel, E. A., ... & Ghazzawy, H. S. (2022). Mulching as a sustainable water and soil saving practice in agriculture: A review. Agronomy, 12(8), 1881. https://doi.org/10.3390/agronomy12081881

Gil, G., Casagrande, D. E., Cortés, L. P., & Verschae, R. (2023). Why the low adoption of robotics in the farms? Challenges for the establishment of commercial agricultural robots. Smart Agricultural Technology, 3, 100069. https://doi.org/10.1016/j.atech.2022.100069

Hwang, W. Y., Guo, B. C., Hoang, A., Chang, C. C., & Wu, N. T. (2022). Facilitating authentic contextual EFL speaking and conversation with smart mechanisms and investigating its influence on learning achievements. Computer Assisted Language Learning, 1-27. https://doi.org/10.1080/09588221.2022.2095406

Khodadad, C. L., Hummerick, M. E., Spencer, L. E., Dixit, A. R., Richards, J. T., Romeyn, M. W., ... & Massa, G. D. (2020). Microbiological and nutritional analysis of lettuce crops grown on the international space station. Frontiers in Plant Science, 11, 199. https://doi.org/10.3389/fpls.2020.00199

Lee, J. S., Chandra, D., & Son, J. (2022). Growth, physicochemical, nutritional, and postharvest qualities of leaf lettuce (Lactuca sativa L.) as affected by cultivar and amount of applied nutrient solution. Horticulturae, 8(5), 436. https://doi.org/10.3390/horticulturae8050436

Leksono, A. P. (2021). Pengaruh Konsentrasi Dan Interval Pemberian Poc Urin Kelinci Terhadap Pertumbuhan Dan Produksi Tanaman Selada (Lactuca sativa L.). Biofarm : Jurnal Ilmiah Pertanian, 17(2), 57. https://doi.org/10.31941/biofarm.v17i2.1610

Lieder, S., & Schröter-Schlaack, C. (2021). Smart farming technologies in arable farming: Towards a holistic assessment of opportunities and risks. Sustainability, 13(12), 6783. https://doi.org/10.3390/su13126783

Lindgren, R., Henfridsson, O., & Schultze, U. (2004). Design principles for competence management systems: a synthesis of an action research study. MIS quarterly, 435-472. https://doi.org/10.2307/25148646

Meriaty. (2021). PERTUMBUHAN DAN HASIL TANAMAN SELADA (Lactuca sativaL.) AKIBAT JENIS MEDIA TANAM HIDROPONIK DAN KONSENTRASI NUTRISI AB MIX. 4(2), 75–84. https://doi.org/10.34012/agroprimatech.v4i2.1698

Pambudi, A. S., Andryana, S., & Gunaryati, A. (2020). Rancang Bangun Penyiraman Tanaman Pintar Menggunakan Smartphone dan Mikrokontroler Arduino Berbasis Internet of Thing. Jurnal Media Informatika Budidarma, 4(2), 250. https://doi.org/10.30865/mib.v4i2.1913

Riski, M., & Ramli, R. (2022). Pertumbuhan dan Hasil Tanaman Selada (Lactuca sativa L.) dengan Pemberian Air Kelapa pada Sistem Hidroponik Substrat. AGROTEKBIS: JURNAL ILMU PERTANIAN (e-journal), 10(2), 397-405.

Rodriguez, J. M., Molnar, J. J., Fazio, R. A., Sydnor, E., & Lowe, M. J. (2009). Barriers to adoption of sustainable agriculture practices: Change agent perspectives. Renewable agriculture and food systems, 24(1), 60-71. https://doi.org/10.1017/S1742170508002421

Santos, J. A., Fraga, H., Malheiro, A. C., Moutinho-Pereira, J., Dinis, L. T., Correia, C., ... & Schultz, H. R. (2020). A review of the potential climate change impacts and adaptation options for European viticulture. Applied Sciences, 10(9), 3092. https://doi.org/10.3390/app10093092

Shahzad, A., Ullah, S., Dar, A. A., Sardar, M. F., Mehmood, T., Tufail, M. A., ... & Haris, M. (2021). Nexus on climate change: Agriculture and possible solution to cope future climate change stresses. Environmental Science and Pollution Research, 28, 14211-14232. https://doi.org/10.1007/s11356-021-12649-8

Singh, A., Dhanaraj, R. K., & Sharma, A. K. (2024). Personalized device authentication scheme using Q-learning-based decision-making with the aid of transfer fuzzy learning for IIoT devices in zero trust network (PDA-QLTFL). Computers and Electrical Engineering, 118, 109435. https://doi.org/10.1016/j.compeleceng.2024.109435

Tian, H., Wang, T., Liu, Y., Qiao, X., & Li, Y. (2020). Computer vision technology in agricultural automation—A review. Information Processing in Agriculture, 7(1), 1-19. https://doi.org/10.1016/j.inpa.2019.09.006

Triananda, D. (2021). Pengelolaan Kebun Karet dalam Perspektif Akad Musaqah (Studi di Desa Pisang Baru Kecamatan Bumi Agung Kabupaten Way Kanan) (Doctoral dissertation, IAIN Metro).

Tsolakis, N., Harrington, T. S., & Srai, J. S. (2023). Leveraging automation and data-driven logistics for sustainable farming of high-value crops in emerging economies. Smart agricultural technology, 4, 100139. https://doi.org/10.1016/j.atech.2022.100139

Zhang, S., Guo, Y., Zhao, H., Wang, Y., Chow, D., & Fang, Y. (2020). Methodologies of control strategies for improving energy efficiency in agricultural greenhouses. Journal of Cleaner Production, 274, 122695. https://doi.org/10.1016/j.jclepro.2020.122695

Published
2024-08-13
How to Cite
Rifansyah, M. R., & R, R. K. (2024). Prototype of Microcontroller Based Water Pump Control System for Lettuce Plants Using Fuzzy Tsukamoto. Journal La Multiapp, 5(4), 440-452. https://doi.org/10.37899/journallamultiapp.v5i4.1462