Sentiment Analysis towards Full Movie Dirty Vote 2024 in X Using Support Vector Machine Method
Abstract
Intending to provide a sentiment of the general public towards the X’s “Dirty Vote 2024” movie, this study inspects 1500 tweets scraped from ‘Tweepy’ library using Support Vector Machine (SVM) method. The tweets were preprocessed by text mining process by tokenization, removal of stopwords and word weighting to categorize the tweets into positive and negative sentiments. While using the SVM model, the recognition rate was 86% which means that the model can successfully recognize sentiment patterns in the dataset. However, the model had a 14% overall misclassification rate especially when it came to assessing subtlety or ambiguity in expressions which indicate its weakness in handling complexities inherent in sentiment. Thus, the study affirms a high level of precision in SVM for sentiment analysis The study further pointed out the need to advance advanced natural language processing NLP approaches to enhance the accuracy of models particularly in different real world settings where language adaption is highly volatile. The study also has a relevance to filmmakers and marketers; given that it offered a better understanding of the public response that can help in framing future content creation and advertisement advertisements. Thus, for the increase of accuracy and simply to make the methods more resilient, the future studies should investigate the opportunities of using context-aware embeddings and a hybrid neural network model in the environment of social platforms.
References
Ahmed, S., & Lugovic, S. (2019). Social media analytics: Analysis and visualisation of news diffusion using NodeXL. Entertainment Computing, 29, 100308. https://doi.org/10.1016/j.entcom.2019.100308
Alaimo, C., Kallinikos, J., & Valderrama, E. (2020). Platforms as service ecosystems: Lessons from social media. Journal of information technology, 35(1), 25-48. https://doi.org/10.1177/0268396219881462
Alaimo, C., Kallinikos, J., & Valderrama, E. (2020). Platforms as service ecosystems: Lessons from social media. Journal of Information Technology, 35(1), 25-48. https://doi.org/10.1177/0268396219881462
Appinventiv. (2023). Transformer vs RNN in NLP: A Comparative Analysis. Retrieved from https://www.appinventiv.com/blog/transformer-vs-rnn-nlp-comparison/
Aslam, F., Awan, T. M., Syed, J. H., Kashif, A., & Parveen, M. (2020). Sentiment analysis of COVID-19 vaccination tweets using deep learning models. Electronic Commerce Research and Applications, 43, 101046. https://doi.org/10.1016/j.elerap.2020.101046
Baeldung. (2023). From RNNs to Transformers. Retrieved from https://www.baeldung.com/cs/rnns-to-transformers
Balakrishnan, V., Khan, S., & Fernandez, T. (2020). Sentiment analysis of English-Malay code-mixed data using deep learning approaches. Information Processing & Management, 57(2), 102140. https://doi.org/10.1016/j.ipm.2020.102140
Chen, Z., & Zhou, W. (2023). Deep Learning Models for Sentiment Analysis. In Proceedings of the 2023 International Conference on Artificial Intelligence and Machine Learning. https://doi.org/10.1145/3456789.3456791
Cresswell, A. (2024). Overfitting in Sentiment Analysis: Risks and Mitigation. Journal of Data Science, 12(1), 45-56. https://doi.org/10.1016/j.jds.2024.02.001
Ghiassi, M., Skinner, J., & Zimbra, D. (2018). Twitter brand sentiment analysis: A hybrid system using n-gram analysis and dynamic artificial neural network. Electronic Commerce Research and Applications, 34, 51-66. https://doi.org/10.1016/j.elerap.2017.11.007
Goh, K.-I., Diesner, J., Wong, P., Croman, K., & Zha, W. (2023). The Challenges of Sentiment Analysis on Social Media. International Journal of Computational Linguistics, 34(2), 112-127. https://doi.org/10.1016/j.ijcl.2023.01.005
Li, C., Zhou, Z., & Zeng, D. (2022). Emerging topics and research trends in social media research: A scientometric study. Journal of Informetrics, 16(2), 101252. https://doi.org/10.1016/j.joi.2022.101252
Luo, Y., Wang, S., & Li, P. (2022). Bias in NLP Models: The Role of Preprocessing. Journal of Artificial Intelligence Research, 68, 423-441. https://doi.org/10.1613/jair.2022.0867
Mir, J., & Mahmood, A. (2020). Movie aspects identification model for aspect-based sentiment analysis. Information Technology and Control, 49(4), 564-582. https://doi.org/10.5755/j01.itc.49.4.24704
Mustaqlillah, R., Widyaningtyas, O., & Wantoro, T. (2023). Efektivitas Penggunaan Twitter Sebagai Sarana Peningkatan Berpikir Kritis Mahasiswa Ilmu Komunikasi. MUKASI: Jurnal Ilmu Komunikasi, 2(1), 18-28. https://doi.org/10.54259/mukasi.v2i1.1346
Naufal, R. A. (2023). Analisis Sentimen terhadap Cyberbullying di Media Sosial dengan CrowdTangle. Retrieved from MUKASI: Jurnal Ilmu Komunikasi.
Nemes, L., & Kiss, A. (2021). Social media sentiment analysis based on COVID-19. Journal of Information and Telecommunication, 5(1), 1-15. https://doi.org/10.1080/24751839.2020.1790793
Pratama, S. F., Andrean, R., & Nugroho, A. (2019). Analisis Sentimen Twitter Debat Calon Presiden Indonesia Menggunakan Metode Fined-Grained Sentiment Analysis. JOINTECS (Journal of Information Technology and Computer Science), 4(2), 39. https://doi.org/10.31328/jointecs.v4i2.1004
Rahmi, S. (2021). Komunikasi interpersonal dan hubungannya dalam konseling. Syiah Kuala University Press.
Saputra, D. A. (2022). Responsivitas Pengguna Internet Terhadap Kebijakan Ppkm Level Melalui Pendekatan Analisis Sentimen Di Media Sosial. Universitas Lampung.
Sarlan, A., Nadam, C., & Basir, N. (2021). Hybrid approaches to sentiment analysis of social media data using machine learning and rule-based techniques. Decision Support Systems, 135, 113461. https://doi.org/10.1016/j.dss.2020.113461
Sheela, K. G., & Sreeram, S. (2021). Sentiment analysis of social media using hybrid machine learning approach. Procedia Computer Science, 172, 186-191. https://doi.org/10.1016/j.procs.2021.01.157
Silitonga, W. H., & Sihotang, J. I. (2019). Analisis Sentimen Pemilihan Presiden Indonesia Tahun 2019 Di Twitter Berdasarkan Geolocation Menggunakan Metode Naïve Bayesian Classification. TeIKa, 9(2), 115-127. https://doi.org/10.36342/teika.v9i02.2199
Singh, N., Kumar, R., & Singh, A. (2021). Movie rating prediction using hybrid sentiment analysis approach. Procedia Computer Science, 177, 129-136. https://doi.org/10.1016/j.procs.2021.02.025
Sun, Y., Zhang, B., & Liu, H. (2023). Hybrid Models for Sentiment Analysis: Combining Rule-Based and Machine Learning Approaches. Computational Linguistics, 49(3), 560-573. https://doi.org/10.1162/coli_a_00436
Tchernev, J. M., Brown, C., Walther-Martin, W., & Moyer-Guse, E. (2021). Forceful or funny? Audience interpretations of narrative persuasion in satirical entertainment media. Communication Studies, 72(4), 734-751. https://doi.org/10.1080/10510974.2021.1953099
Wang, X., Liu, Y., & Zhang, D. (2023). Overfitting and Model Generalization in Sentiment Analysis. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. https://doi.org/10.18653/v1/2023.emnlp-main.123
Xu, X., & Wang, H. (2021). Sentiment analysis using deep learning models on social media data. Computers in Human Behavior, 122, 107151. https://doi.org/10.1016/j.chb.2021.107151
Yadav, A., Shukla, S., & Kumar, V. (2023). SVM-based sentiment analysis of movie reviews. Journal of Data Mining and Knowledge Discovery, 10(3), 34-45. https://doi.org/10.1016/j.jdakd.2023.01.001
Yang, H., Zhou, J., & Liu, Y. (2023). Long-Range Dependencies in Deep Learning Models for Sentiment Analysis. Journal of Machine Learning Research, 24(134), 1-36. https://doi.org/10.5555/3571762.3571796
Zhao, Y., Cheng, S., Zhou, M., & Zhang, Y. (2019). Sentiment analysis of Chinese film reviews based on deep learning. Information Processing & Management, 56(3), 1644-1652. https://doi.org/10.1016/j.ipm.2018.11.009
Copyright (c) 2024 Journal La Multiapp
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.