Real-Time Monitoring System for Peatland Fire Potential Based on Internet of Things
Abstract
This research aims to develop a real-time monitoring system for peatland fire potential based on the Internet of Things (IoT) with a focus on early detection of potential peatland fires. The main problem to be solved is the lack of an effective system in the early detection of potential peatland fires, which can cause serious environmental impacts. The method used involves the use of air temperature, air humidity, soil moisture, and fire detection sensors integrated with alarm-based alerts. Data collection is done in real-time to provide a deeper understanding of peatland conditions and potential fire risks. The research results show that the developed system is capable of providing accurate and fast information related to peatland conditions, thus helping to prevent and reduce the impact of peatland fires. With this system, it is expected to increase efficiency in early fire detection and minimize the losses caused by peatland fires.
References
Ahmed, A., Zhang, Y., & Nichols, S. (2011). Review and evaluation of remote sensing methods for soil-moisture estimation. SPIE reviews, 2(1), 028001. https://doi.org/10.1117/1.3534910
Anhar, I. P., Mardiana, R., & Sita, R. (2022). Dampak Kebakaran Hutan dan Lahan Gambut terhadap Manusia dan Lingkungan Hidup (Studi Kasus: Desa Bunsur, Kecamatan Sungai Apit, Kabupaten Siak, Provinsi Riau). Jurnal Sains Komunikasi Dan Pengembangan Masyarakat [JSKPM], 6(1), 75-85. https://doi.org/10.29244/jskpm.v6i1.967
Anzum, R., Habaebi, M. H., Islam, M. R., & Hakim, G. P. (2021, August). A study of LoRa signal propagation in hilly suburban area for smart city applications. In 2021 IEEE 7th International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA) (pp. 16-20). IEEE. https://doi.org/10.1109/ICSIMA50015.2021.9526306
Arisandi, D., Trisnawati, L., & Syamsuadi, A. (2022). Sistem Monitoring Deteksi Dini Kebakaran Hutan Berbasis Multiplatform Di Kabupaten Siak Menggunakan SDLC Prototyping. Jurnal Sistem Komputer dan Informatika (JSON), 3(4), 410-416. http://dx.doi.org/10.30865/json.v3i4.4136
Barmpoutis, P., Papaioannou, P., Dimitropoulos, K., & Grammalidis, N. (2020). A review on early forest fire detection systems using optical remote sensing. Sensors, 20(22), 6442. https://doi.org/10.3390/s20226442
Carta, F., Zidda, C., Putzu, M., Loru, D., Anedda, M., & Giusto, D. (2023). Advancements in forest fire prevention: A comprehensive survey. Sensors, 23(14), 6635. https://doi.org/10.3390/s23146635
Chuvieco, E., Aguado, I., Yebra, M., Nieto, H., Salas, J., Martín, M. P., ... & Zamora, R. (2010). Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological modelling, 221(1), 46-58. https://doi.org/10.1016/j.ecolmodel.2008.11.017
Enriko, I. K. A., Gustiyana, F. N., & Giri, G. C. (2023). LoRA Gateway Coverage and Capacity Analysis for Supporting Monitoring Passive Infrastructure Fiber Optic in Urban Area. Elinvo (Electronics, Informatics, and Vocational Education), 8(2), 164-170. https://doi.org/10.21831/elinvo.v8i2.59280
Gaur, A., Singh, A., Kumar, A., Kumar, A., & Kapoor, K. (2020). Video flame and smoke based fire detection algorithms: A literature review. Fire technology, 56, 1943-1980. https://doi.org/10.1007/s10694-020-00986-y
Gaur, A., Singh, A., Kumar, A., Kumar, A., & Kapoor, K. (2020). Video flame and smoke based fire detection algorithms: A literature review. Fire technology, 56, 1943-1980. https://doi.org/10.1007/s10694-020-00986-y
Giannakidou, S., Radoglou-Grammatikis, P., Lagkas, T., Argyriou, V., Goudos, S., Markakis, E. K., & Sarigiannidis, P. (2024). Leveraging the power of internet of things and artificial intelligence in forest fire prevention, detection, and restoration: A comprehensive survey. Internet of Things, 26, 101171. https://doi.org/10.1016/j.iot.2024.101171
Irawan, Y., Muzawi, R., & Alamsyah, A. (2022). Sistem Real Time Monitoring Pendeteksi Kebakaran Hutan dan Lahan di Provinsi Riau. INTECOMS: Journal of Information Technology and Computer Science, 5(2), 10-17. https://doi.org/10.31539/intecoms.v5i2.4567
Jain, P., Coogan, S. C., Subramanian, S. G., Crowley, M., Taylor, S., & Flannigan, M. D. (2020). A review of machine learning applications in wildfire science and management. Environmental Reviews, 28(4), 478-505. https://doi.org/10.1139/er-2020-0019
Lakshmi, V. (2013). Remote sensing of soil moisture. International Scholarly Research Notices, 2013(1), 424178. https://doi.org/10.1155/2013/424178
Lees, K. J., Quaife, T., Artz, R. R. E., Khomik, M., & Clark, J. M. (2018). Potential for using remote sensing to estimate carbon fluxes across northern peatlands–A review. Science of the Total Environment, 615, 857-874. https://doi.org/10.1016/j.scitotenv.2017.09.103
Mädler, L., Roessler, A., Pratsinis, S. E., Sahm, T., Gurlo, A., Barsan, N., & Weimar, U. (2006). Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles. Sensors and Actuators B: Chemical, 114(1), 283-295. https://doi.org/10.1016/j.snb.2005.05.014
Morseleno, A. (2021). Alat Monitoring Kondisi Tanah Dan Penyiraman Otomatis Pada Tanaman Cabai Di Lahan Gambut Dengan Web Menggunakan Nodemcu Esp8266 Berbasis Internet of Things (Doctoral dissertation, Universitas Islam Kalimantan MAB).
Prakoso, S. Y., Harnawan, A. A., Mazdadi, M. I., & Pambudi, Y. (2022). Sistem monitor suhu dan kelembaban berbasis cloud pada lahan gambut. Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat, 19(1), 60-67. http://dx.doi.org/10.20527/flux.v19i1.10379
Qamariyanti, Y., Usman, R., & Rahmawati, D. (2023). Pencegahan dan Penanggulangan Kebakaran Lahan Gambut dan Hutan. Jurnal Ilmu Lingkungan, 21(1), 132-142. https://doi.org/10.14710/jil.21.1.132-142
Rahman, S., & Razikin, A. (2018). Sistem peringatan dini bahaya kebakaran pada lahan gambut. JEPIN (Jurnal Edukasi dan Penelitian Informatika), 4(2), 141-146. http://dx.doi.org/10.26418/jp.v4i2.28074
Rilangi, E. Y. D., & Iqbal, M. S. (2021). Sistem Iot Berbasis Lora Untuk Pemantauan Parameter Ph Dan Kelembaban Tanah Pada Tanaman Stroberi. SinarFe7, 4(1), 1-5.
Ristian, U., Ruslianto, I., & Sari, K. (2022). Sistem Monitoring Smart Greenhouse pada Lahan Terbatas Berbasis Internet of Things (IoT). J. Edukasi dan Penelit. Inform, 8(1), 87. http://dx.doi.org/10.26418/jp.v8i1.52770
Sahbani, R., & Azwar, H. (2021). PENGIRIMAN DATA SENSOR SUHU DAN ASAP MENGGUNAKAN LONG RANGE (LoRa). ABEC Indonesia, 9, 1063-1080.
Santoso, G., Hani, S., & Putra, U. D. (2022). Monitoring kualitas tanah lahan pertanian Desa Sidorejo menggunakan sensor pH tanah dan Internet of Things. Jurnal Nusantara Mengabdi, 2(1), 1-10. https://doi.org/10.35912/jnm.v2i1.1387
Saydi, R. (2021). Monitoring Curah Hujan dan Kelengasan Tanah Lahan Pertanian Menggunakan Sensor Berbasis Internet of Things (IoT) sebagai Dasar Pertanian Presisi. Jurnal Ilmiah Teknologi Pertanian Agrotechno, 6(1), 25.
Tampubolon, B., Harjanti, D. T., Adlika, N. M., & Christanto, L. M. H. (2020). Pemanfaatan Lahan Gambut Menjadi Lahan Potensial untuk Menjaga Ketahanan Pangan di Kalimantan Barat. Geodika J. Kaji. Ilmu dan Pendidik. Geogr, 4(2), 182-191. https://doi.org/10.29408/geodika.v4i2.2765
Veloso, A. F. D. S., Júnior, J. V. R., Rabelo, R. D. A. L., & Silveira, J. D. F. (2021). HyDSMaaS: A hybrid communication infrastructure with LoRaWAN and LoraMesh for the demand side management as a service. Future Internet, 13(11), 271. https://doi.org/10.3390/fi13110271
Zhang, Y., Geng, P., Sivaparthipan, C. B., & Muthu, B. A. (2021). Big data and artificial intelligence based early risk warning system of fire hazard for smart cities. Sustainable Energy Technologies and Assessments, 45, 100986. https://doi.org/10.1016/j.seta.2020.100986
Copyright (c) 2024 Journal La Multiapp
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.