The Applications based on Video Motion Magnification Techniques
Abstract
This research study's major goal is to present an important overview of recent work on applications based on Video Motion magnification (VMM) approaches during the course of the last 10 years. Over the past few years, video motion magnification (VMM) technologies have attracted a lot of attention and research, particularly as applications based on video motion have become more and more necessary. With an increase in the number of recommended procedures, surveying and evaluation become necessary. In this study, we will highlight how the survey was focused on several articles that used motion video augmentation techniques in their applications. We contrast these applications as well.
References
Alghoul, K. (2015). Heart Rate Variability extraction from video signals (Doctoral dissertation, Université d'Ottawa/University of Ottawa). http://dx.doi.org/10.20381/ruor-4110
Balakrishnan, G., Durand, F., & Guttag, J. (2013). Detecting pulse from head motions in video. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3430-3437).
Bennett, S. L., Goubran, R., & Knoefel, F. (2016, May). Adaptive eulerian video magnification methods to extract heart rate from thermal video. In 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA) (pp. 1-5). IEEE. https://doi.org/10.1109/MeMeA.2016.7533818
Bennett, S., El Harake, T. N., Goubran, R., & Knoefel, F. (2017). Adaptive eulerian video processing of thermal video: An experimental analysis. IEEE Transactions on Instrumentation and Measurement, 66(10), 2516-2524. https://doi.org/10.1109/TIM.2017.2684518
Bharadwaj, S., Dhamecha, T. I., Vatsa, M., & Singh, R. (2013). Computationally efficient face spoofing detection with motion magnification. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops (pp. 105-110).
Cai, E., Li, D., Lin, J., & Li, H. (2022). Bayesian-Inference Embedded Spline-Kerneled Chirplet Transform for Spectrum-Aware Motion Magnification. Sensors, 22(7), 2794. https://doi.org/10.3390/s22072794
Das, R., Negi, G., & Smeaton, A. F. (2021). Detecting deepfake videos using Euler video magnification. arXiv preprint arXiv:2101.11563. https://doi.org/10.2352/ISSN.2470-1173.2021.4.MWSF-272
Fahmy, G., Fahmy, M. F., & Fahmy, O. M. (2017). Micro‐movement magnification in video signals using complex wavelet analysis. IET Image Processing, 11(11), 986-993. https://doi.org/10.1049/iet-ipr.2017.0049
Flotho, P., Heiss, C., Steidl, G., & Strauss, D. J. (2022). Lagrangian motion magnification with double sparse optical flow decomposition. arXiv preprint arXiv:2204.07636. https://doi.org/10.3389/fams.2023.1164491
Javaid, H., Babar, T. K., Rasool, A., & Saghir, R. U. (2013). Video colour variation detection and motion magnification to observe subtle changes.
Kumar, M., Choudhary, T., & Bhuyan, M. K. (2018, March). Small Motion Magnification Using Automated RoI Selection and Spatial Co-ordinate Approach. In 2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) (pp. 1-4). IEEE. https://doi.org/10.1109/WiSPNET.2018.8538534
Laha, S., LaLonde, R., Carmack, A. E., Foroosh, H., Olson, J. C., Shaikh, S., & Bagci, U. (2020). Analysis of Video Retinal Angiography With Deep Learning and Eulerian Magnification. Frontiers in Computer Science, 2, 24. https://doi.org/10.3389/fcomp.2020.00024
Lauridsen, H., Gonzales, S., Hedwig, D., Perrin, K. L., Williams, C. J., Wrege, P. H., ... & Butcher, J. T. (2019). Extracting physiological information in experimental biology via Eulerian video magnification. BMC biology, 17(1), 1-26. https://doi.org/10.1186/s12915-019-0716-7
Sarode, L., & Mandaogade, N. N. (2014). Video motion magnification using spatio-temporal algorithm. International Journal of Computer Applications, 96(9).
Takeda, S., Akagi, Y., Okami, K., Isogai, M., & Kimata, H. (2019). Video magnification in the wild using fractional anisotropy in temporal distribution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 1614-1622).
Verma, M., & Raman, S. (2018). Edge-aware spatial filtering-based motion magnification. In Proceedings of 2nd International Conference on Computer Vision & Image Processing: CVIP 2017, Volume 2 (pp. 117-128). Springer Singapore. https://doi.org/10.1007/978-981-10-7898-9_10
Wu, H. Y., Rubinstein, M., Shih, E., Guttag, J., Durand, F., & Freeman, W. (2012). Eulerian video magnification for revealing subtle changes in the world. ACM transactions on graphics (TOG), 31(4), 1-8. https://doi.org/10.1145/2185520.2185561
Yadav, S., Bhalkare, P., Shingde, S., & Verma, U. (2020, August). Performance analysis of video magnification methods. In 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT) (pp. 1293-1301). IEEE. https://doi.org/10.1109/ICSSIT48917.2020.9214167
Yu, H., Lin, H., Zhang, E., Li, J., & Chen, G. (2017, October). Region-based euler video amplification algorithm. In 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) (pp. 1-5). IEEE. https://doi.org/10.1109/CISP-BMEI.2017.8302082
Zhang, J., Yan, B., Du, X., Guo, Q., Hao, R., Liu, J., ... & Liu, Y. (2022). Motion magnification multi-feature relation network for facial microexpression recognition. Complex & Intelligent Systems, 8(4), 3363-3376. https://doi.org/10.1007/s40747-022-00680-2
Copyright (c) 2024 Journal La Multiapp
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.