Surfactant Content Influence On Formation Water Compatibility

  • Della Azlia Oktavia Department of Petroleum Engineering, Faculty of Engineering, Universitas Islam Riau
  • Romal Ramadhan Department of Petroleum Engineering, Faculty of Engineering, Universitas Islam Riau
  • Dimas Hadi Prabowo PT. SPR Langgak, Pekanbaru, Riau, Indonesia
  • Alfatih Syaifurrohman PT. SPR Langgak, Pekanbaru, Riau, Indonesia
  • Muslim Abdurrahman Department of Petroleum Engineering, Faculty of Engineering, Universitas Islam Riau
Keywords: Chemical EOR, Surfactant Injection, Compatibility Test

Abstract

In the pursuit of resolving surfactant non-solubility issues for enhanced oil recovery, this study identifies surfactants that are soluble and compatible with the formation brine of the Langgak field. Over the course of 21 days, the solubility and compatibility of 12 various surfactants were evaluated in synthetic brine with a salinity of 100 ppm and a reservoir temperature of 58˚C. The results indicated that surfactants S3 to S11 were compatible, exhibiting no signs of cloudiness or precipitation, thus making them suitable for further testing. These surfactants are recommended to proceed to phase behavior and interfacial tension (IFT) tests to evaluate their performance and impact on brine formation under reservoir conditions. Conversely, surfactants S1, S2, and S12 demonstrated incompatibility with the Langgak field's brine, as evidenced by cloudiness and precipitation. This incompatibility highlighted specific surfactant compositions that do not align well with the brine composition, providing crucial insights for future surfactant formulation. Understanding these interactions aids in improving the process of choosing surfactants that work well in comparable conditions. Overall, this study establishes a foundational understanding of surfactant-brine interactions, guiding the selection of suitable surfactants for enhanced oil recovery in the Langgak field.

References

Ádám, A. A., Ziegenheim, S., Janovák, L., Szabados, M., Bús, C., Kukovecz, Á., Kónya, Z., Dékány, I., Sipos, P., & Kutus, B. (2023). Binding of Ca2+ Ions to Alkylbenzene Sulfonates: Micelle Formation, Second Critical Concentration and Precipitation. Materials, 16(2), 494. https://doi.org/10.3390/ma16020494

Barnes, J. R., Dirkzwager, H., Smit, J. R., Smit, J. P., On, A., Navarrete, R. C., Ellison, B. H., & Buijse, M. A. (2010). Application of internal olefin sulfonates and other surfactants to EOR. Part 1: Structure-Performance relationships for selection at different reservoir conditions. SPE Improved Oil Recovery Conference?, SPE-129766. https://doi.org/10.2118/129766-MS

Bundang, S. (2023). Evaluasi Laju Produksi Minyak Pada Sumur X Study Pada Pt. Citic Seram Energy Limited, Kabupaten Seram Bagian Timur, Provinsi Maluku. Journal Of Science and Engineering, 6(2). https://doi.org/10.33387/josae.v6i2.7006

Chowdhury, S., Shrivastava, S., Kakati, A., & Sangwai, J. S. (2022). Comprehensive review on the role of surfactants in the chemical enhanced oil recovery process. Industrial & Engineering Chemistry Research, 61(1), 21-64. https://doi.org/10.1021/acs.iecr.1c03301

Cui, Z., Di, Y., Peng, J., Wang, Y., & Feng, N. (2022). Effect of Polyethylene Glycol on Preparation of Magnesium Hydroxide by Electrodeposition. Materials, 15(9), 3278. https://doi.org/10.3390/ma15093278

Dooley, J. J., Dahowski, R. T., & Davidson, C. L. (2010). CO2-driven Enhanced Oil Recovery as a Stepping Stone to What? (No. PNNL-19557). Pacific Northwest National Lab.(PNNL), Richland, WA (United States).

Gbadamosi, A. O., Junin, R., Manan, M. A., Agi, A., & Yusuff, A. S. (2019). An overview of chemical enhanced oil recovery: recent advances and prospects. International Nano Letters, 9, 171–202. https://doi.org/10.1007/s40089-019-0272-8

Hamza, M. F., Sinnathambi, C. M., & Merican, Z. M. A. (2017, June). Recent advancement of hybrid materials used in chemical enhanced oil recovery (CEOR): A review. In IOP Conference Series: Materials Science and Engineering (Vol. 206, No. 1, p. 012007). IOP Publishing. https://doi.org/10.1088/1757-899X/206/1/012007

Hirasaki, G. J., Miller, C. A., & Puerto, M. (2011). Recent advances in surfactant EOR. SPE journal, 16(04), 889-907. https://doi.org/10.2118/115386-PA

Inaloo, M. B., Jafari, F., & Helalizadeh, A. (2014). Comparison of water flooding, Gas injection and WAG injection Scenarios Performance in a Five Spot Pattern. World Applied Sciences Journal, 31(1), 96–103.

Jia, J., Yang, S., Li, J., Liang, Y., Li, R., Tsuji, T., ... & Peng, B. (2024). Review of the Interfacial Structure and Properties of Surfactants in Petroleum Production and Geological Storage Systems from a Molecular Scale Perspective. Molecules, 29(13), 3230. https://doi.org/10.3390/molecules29133230

Kumar, N., Sampaio, M. A., Ojha, K., Hoteit, H., & Mandal, A. (2022). Fundamental aspects, mechanisms and emerging possibilities of CO2 miscible flooding in enhanced oil recovery: A review. Fuel, 330, 125633. https://doi.org/10.1016/j.fuel.2022.125633

Kumar, S., & Mandal, A. (2017). A comprehensive review on chemically enhanced water alternating gas/CO2 (CEWAG) injection for enhanced oil recovery. Journal of Petroleum Science and Engineering, 157, 696-715. https://doi.org/10.1016/j.petrol.2017.07.066

Lebouachera, S. E. I., Balamane-Zizi, O., Boublia, A., Ghriga, M. A., Hasanzadeh, M., Hadri, H. E., ... & Drouiche, N. (2024). Understanding the factors affecting the adsorption of surface-active agents onto reservoir rock in chemical enhanced oil recovery applications: a comprehensive review. Chemistry Africa, 1-24. https://doi.org/10.1007/s42250-024-00931-4

Liu, Z. X., Liang, Y., Wang, Q., Guo, Y. J., Gao, M., Wang, Z. B., & Liu, W. L. (2020). Status and progress of worldwide EOR field applications. Journal of Petroleum Science and Engineering, 193, 107449. https://doi.org/10.1016/j.petrol.2020.107449

Nadir, N., Shahruddin, S., & Othman, J. (2022). Surfactant evaluation for enhanced oil recovery: Phase behavior and interfacial tension. Open Chemistry, 20(1), 1110–1120. https://doi.org/10.1515/chem-2021-0115

Olajire, A. A. (2014). Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges. Energy, 77, 963-982. https://doi.org/10.1016/j.energy.2014.09.005

Putra, B. P., & Kiono, B. F. T. (2021). Mengenal enhanced oil recovery (EOR) sebagai solusi meningkatkan produksi minyak Indonesia. Jurnal Energi Baru Dan Terbarukan, 2(2), 84–100. https://doi.org/10.14710/jebt.2021.11152

Ryu, M., Ahn, J., You, K., Goto, S., & Kim, H. (2009). Synthesis of calcium carbonate in ethanol-ethylene glycol solvent. Journal of the Ceramic Society of Japan, 117(1361), 106–110. https://doi.org/10.2109/jcersj2.117.106

Sheng, J. J. (2010). Modern chemical enhanced oil recovery: theory and practice. Gulf Professional Publishing.

Silver, J. (1993). Chemistry of iron. Springer.

Wang, L., Tian, Y., Yu, X., Wang, C., Yao, B., Wang, S., ... & Wu, Y. S. (2017). Advances in improved/enhanced oil recovery technologies for tight and shale reservoirs. Fuel, 210, 425-445. https://doi.org/10.1016/j.fuel.2017.08.095

Wicaksono, H., Sutijan, S., & Yuliansyah, A. T. (2015). Karakterisasi larutan polimer KYPAM HPAM untuk bahan injeksi dalam enhanced oil recovery (EOR). Jurnal Rekayasa Proses, 9(1), 9–15. https://doi.org/10.22146/jrekpros.24524

Yuan, B., & Wood, D. A. (2018). A comprehensive review of formation damage during enhanced oil recovery. Journal of Petroleum Science and Engineering, 167, 287-299. https://doi.org/10.1016/j.petrol.2018.04.018

Published
2024-11-03
How to Cite
Oktavia, D. A., Ramadhan , R., Prabowo , D. H., Syaifurrohman, A., & Abdurrahman , M. (2024). Surfactant Content Influence On Formation Water Compatibility. Journal La Multiapp, 5(5), 721-731. https://doi.org/10.37899/journallamultiapp.v5i5.1598