Impact of Feature Extraction on Multi-Aspect Sentiment Classification for Livin'byMandiri Using BiLSTM

  • Balqis Sayyidahtul Atikah Faculty of Informatics, Universitas Telkom, Bandung
  • Yuliant Sibaroni Faculty of Informatics, Universitas Telkom, Bandung
  • Diyas Puspandari Faculty of Informatics, Universitas Telkom, Bandung
Keywords: Aspect-Based Sentiment Analysis, Bidirectional LSTM, TF-IDF, Word2Vec, Application Review

Abstract

Mobile applications are currently experiencing very rapid development including applications in the financial sector. Livin'byMandiri is one of the mobile applications used to transact online without the need to go to the bank. This makes it very easy for customers to transact anywhere and anytime. Application reviews are user reviews that reflect the reputation of the application among the community, these application reviews can be found anywhere, so many companies use application reviews as a reference in developing their applications in the future. However, people's opinions on apps can vary and are influenced by many aspects. Therefore, aspect-based sentiment analysis can be applied to app reviews to get better results. This research focuses on analyzing the sentiment of Livin'byMandiri app reviews on the Google Play Store. In this research, the Bidirectional LSTM (Bi-LSTM) method is combined with TF-IDF and Word2Vec feature extraction. From the results of the experiments that have been carried out, the best accuracy results for the access aspect are 81.18% and F1-Score of 81.03%, the service aspect produces an accuracy of 82.82% and F1-Score of 82.74%, and for the convenience aspect produces an accuracy of 77.28% and F1-Score of 77.19%. In this experiment, it is also found that feature extraction has an effect on sentiment analysis, this is evidenced by an increase in accuracy of more than 1% for each aspect when TF-IDF feature extraction is added and also the combination of TF-IDF and Word2vec in the initial model built using only the Neural Network embedding layer.

References

Af’idah, D. I., Dairoh, D., Handayani, S. F., & Pratiwi, R. W. (2021). Pengaruh Parameter Word2Vec terhadap Performa Deep Learning pada Klasifikasi Sentimen. Jurnal Informatika: Jurnal Pengembangan IT, 6(3), 156–161. https://doi.org/10.30591/jpit.v6i3.3016

Arif, M. (2024). Profil Internet Indonesia 2022. Survei.Apjii.or.Id.

Aryati, S. T. R., & Sibaroni, Y. (2023). Analisis Perbandingan Model Kernel Support Vector Machine dalam Analisis Sentimen Opini Pengguna Bank BCA di Twitter. Jurnal Tugas Akhir Fakultas Informatika.

Darwis Alwan, & Ridla, M. A. (2024). Averaged Word2vec sebagai Ekstraksi Fitur pada Analisis Sentimen Ulasan Film di IMDb menggunakan Artificial Neural Network (ANN). JUSTINDO (Jurnal Sistem Dan Teknologi Informasi Indonesia), 9(1), 36–45. https://doi.org/10.32528/justindo.v9i1.1204

Dewi, Herdiani, A., & Kusumo, D. S. (2018). Multi-Aspect Sentiment AnalysisKomentar Wisata TripAdvisordenganRule-Based Classifier(Studi Kasus : Bandung Raya. E-Proceeding of Engineering, 5(1), 1589–1596.

Dewi, R. K., Tantular, B., Suprijadi, J., & Pravitasari, A. A. (2023). Analisis Sentimen Ulasan Pengguna Aplikasi E-Samsat Provinsi Jawa Barat Menggunakan Metode BiGRU. Inferensi, 1(1), 1. https://doi.org/10.12962/j27213862.v1i1.19113

Djaballah, K. A., Boukhalfa, K., & Boussaid, O. (2019). Sentiment Analysis of Twitter Messages using Word2vec by Weighted Average. 2019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS), 223–228. https://doi.org/10.1109/SNAMS.2019.8931827

Fuadah, Y. N., Ubaidullah, I. D., Ibrahim, N., Taliningsing, F. F., SY, N. K., & Pramuditho, M. A. (2022). Optimasi Convolutional Neural Network dan K-Fold Cross Validation pada Sistem Klasifikasi Glaukoma. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 10(3), 728. https://doi.org/10.26760/elkomika.v10i3.728

Gifari, O. I., Adha, Muh., Freddy, F., & Durrand, F. F. S. (2022). Analisis Sentimen Review Film Menggunakan TF-IDF dan Support Vector Machine. Journal of Information Technology, 2(1), 36–40. https://doi.org/10.46229/jifotech.v2i1.330

Mardiyanto, R. O., Kusrini, & Wibowo, F. W. (2023). Analisis Sentimen Pengguna Aplikasi Bank Syariah Indonesia dengan Menggunakan Algoritma Support Vector Machine (SVM). TEKNIMEDIA: Teknologi Informasi Dan Multimedia, 4(1), 9–15. https://doi.org/10.46764/teknimedia.v4i1.85

Munawi, H. A., Alwi, M. H., Nevita, A. P., Santoso, R., & Indrawati, E. M. (2023). Alat Pengendali Stop Kontak Berbasis Wemos D1. G-Tech: Jurnal Teknologi Terapan, 7(1), 29–36. https://doi.org/10.33379/gtech.v7i1.1823

Mutmainah, S., Fudholi, D. H., & Hidayat, S. (2023). Analisis Sentimen dan Pemodelan Topik Aplikasi Telemedicine Pada Google Play Menggunakan BiLSTM dan LDA. JURNAL MEDIA INFORMATIKA BUDIDARMA, 7(1), 312. https://doi.org/10.30865/mib.v7i1.5486

Pranida, S. Z., & Kurniawardhani, A. (2022). Sentiment Analysis of Expedition Customer Satisfaction using BiGRU and BiLSTM. Indonesian Journal of Artificial Intelligence and Data Mining, 5(1), 44. https://doi.org/10.24014/ijaidm.v5i1.17361

Pratomo, S. A., Faraby, S. Al, & Purbolaksono, M. D. (2021). Analisis Sentimen Pengaruh Kombinasi Ekstraksi Fitur TF-IDF Dan Lexicon Pada Ulasan Film Menggunakan Metode KNN. EProceedings of Engineering, 8(5), 10116–10126.

Puteri, D. I. (2023). Implementasi Long Short Term Memory (LSTM) dan Bidirectional Long Short Term Memory (BiLSTM) Dalam Prediksi Harga Saham Syariah. Euler : Jurnal Ilmiah Matematika, Sains Dan Teknologi, 11(1), 35–43. https://doi.org/10.34312/euler.v11i1.19791

Puteri, D. I., Darmawan, G., & Ruchjana, B. N. (2024). Prediksi Harga Saham Syariah menggunakan Bidirectional Long Short Term Memory (BiLSTM) dan Algoritma Grid Search. Jambura Journal of Mathematics, 6(1), 39–45. https://doi.org/10.37905/jjom.v6i1.23297

Radiena, G., & Nugroho, A. (2023). Analisis Sentimen Berbasis Aspek pada Ulasan Aplikasi Kai Access Menggunakan Metode Support vector Machine. Jurnal Pendidikan Teknologi Informasi (JUKANTI), 6(1), 1–10. https://doi.org/10.37792/jukanti.v6i1.836

Rahmadanisya, A., Setiawan, E. B., & Adytia, D. (2022). The Influence of Sentiment on Bank Mandiri (BMRI) Stock Movements Using Feature Expansion with Word2vec and Support Vector Machine Classification. 2022 10th International Conference on Information and Communication Technology (ICoICT), 287–292. https://doi.org/10.1109/ICoICT55009.2022.9914853

Rizky, M. G., Jusak, & Puspasari, I. (2021). Analisis Perbandingan Metode LSTM dan BiLSTM Untuk Klasifikasi Sinyal Jantung Phonocardiogram. JCONES - Journal of Control and Network Systems, 10(2), 44–49.

Roiqoh, S., Zaman, B., & Kartono, K. (2023). Analisis Sentimen Berbasis Aspek Ulasan Aplikasi Mobile JKN dengan Lexicon Based dan Naïve Bayes. JURNAL MEDIA INFORMATIKA BUDIDARMA, 7(3), 1582. https://doi.org/10.30865/mib.v7i3.6194

Romadhan, A. N., Utami, E., & Hartanto, A. D. (2023). Analisis Sentimen Opini Publik Menggunakan Metode BiLSTM Pada Media Sosial Twitter. SEMIOTIKA: Seminar Nasional Teknologi Informasi Dan Matematika, 2(1), 22–33.

Safira, A. D. (2023). Deteksi Hoax di Media Sosial Menggunakan Metode Bidirectional Long Short-Term Memory (Bi-LSTM) dan 1 Dimensional-Convolutional Neural Network (1D-CNN). Universitas Telkom.

Saputra, D., Haryani, Surniandari, A., & Sidauruk, J. (2023). Implementation Of DeLone And McLean Models To Measure The Success Of Online-Based Tutoring System. Bulletin of Computer Science and Electrical Engineering, 4(1), 8–23.

Simanungkalit, A., Naibaho, J. P. P., & Kweldju, A. De. (2024). Analisis Sentimen Berbasis Aspek Pada Ulasan Aplikasi Shopee Menggunakan Algoritma Naïve Bayes. Jutisi : Jurnal Ilmiah Teknik Informatika Dan Sistem Informasi, 13(1), 659. https://doi.org/10.35889/jutisi.v13i1.1826

Sujjadaa, A., Somantri, Novianti, J. N., & Indra Griha Tofik Isa. (2023). Analisis Sentimen Terhadap Review Bank Digital Pada Google Play Store Menggunakan Metode Support Vector Machine (SVM). Jurnal Rekayasa Teknologi Nusa Putra, 9(2), 122–135. https://doi.org/10.52005/rekayasa.v9i2.345

Published
2024-09-02
How to Cite
Atikah, B. S., Sibaroni, Y., & Puspandari, D. (2024). Impact of Feature Extraction on Multi-Aspect Sentiment Classification for Livin’byMandiri Using BiLSTM. Journal La Multiapp, 5(5), 524-539. https://doi.org/10.37899/journallamultiapp.v5i5.1541