Design of Forecasting for Perishable Product with Artficial Neural Network

  • Chintya Salwa Sabhira Department of Industrial Engineering, Trisakti University
Keywords: Perishable Products, Raw Materials, Inventory Management, Continous Review, Artifcial Neural Network

Abstract

Raw materials are an important part of the manufacturing industry, especially for raw materials that do not last long or have a lifespan. To be able to produce good products, the raw materials used must be of good quality. This happened to company XYZ which operates in the cereal and snack food industry. Inventory control is quite a big challenge for companies. In this year the company experienced losses due to a shortage of finished snacks products, due to finished goods being obsolete due to a lack of accuracy in forecasting snack demand. The research raised forecasting using the Artificial Neural Network method. ANN is known to be able to produce good accuracy values in predicting sales.

References

Amrina, E., Dendra, F. G., & Indrapriyatna, S. A. (2023). “Inventory Control Model of Beef for Rendang Products,” Jurnal Optimasi Sistem Industri, vol. 22, no. 1 (22–30). https://doi.org/10.25077/josi.v22.n1.p22-30.2023

Delfmann, W. & Albers, S. (2000 ).“Supply Chain in Global Context,” Cologne, Germany.

Fan, Y., Lu, Q., Xu, L., & Liu, A. (2021). “Sustainable supply chain management for perishable products in emerging markets: An integrated location-inventory-routing model,” Transp Res E Logist Transp Rev, vol. 150. https://doi.org/10.1016/j.tre.2021.102319

Jayant, A. & Bhadouria, S. (2017). “Development of ANN Models for Demand Forecasting,” American Journal of Engineering Research (AJER), vol. 3, no. 6, pp. 142–147, 2017, [Online]. Available: www.ajer.org

Kittisak, A. (2023). “Challenges and Strategies for Inventory Management in Small and Medium-Sized Cosmetic Enterprises: A Review,” International Journal of Information Technology and Computer Science Applications, vol. 1, no. 2 (1–7). https://doi.org/10.58776/ijitcsa.v1i2.30

Mataram, M. I. ( 2008). “Peramalan Beban Hari Libur Menggunakan Artificial Neural Network,” Peramalan Beban … I Made Mataram Teknologi Elektro, vol. 53, no. 2, (2006–2009)

Munyaka, B. J., & Yadavalli S. S. V. (2022).“Inventory Management Concepts and Implementations: a Systematic Review,” South African Journal of Industrial Engineering, vol. 33, no. 2 (15–36). https://doi.org/10.7166/33-2-2527

Priyosulistyo, H., Aminullah, A. & Harahap, F. K. (2022). “Pendekatan Artificial Neural Network untuk Mengestimasi Dimensi Optimum dan Rasio Tulangan Gedung,” Inersia, vol. 18, no. 1, (1–9). https://doi.org/10.21831/inersia.v18i1.45481

Riksakomara, E. & Habibi, Y. M. (2017), “Peramalan Harga Garam Konsumsi Menggunakan Artificial Neural Network Feedforward-Backpropagation (Studi Kasus : PT. Garam Mas, Rembang, Jawa Tengah),” Jurnal Teknik ITS, vol. 6, no. 2. https://doi.org/10.12962/j23373539.v6i2.23200

Rohmawati, A. A., Indwiarti, I. & Pandji, Y. B. (2019). “Perbandingan Prediksi Harga Saham dengan model ARIMA dan Artificial Neural Network,” Indonesia Journal on Computing (Indo-JC), vol. 4, no. 2, (189–198, 2019) https://doi.org/10.21108/indojc.2019.4.2.344

Singh, D. & Verma, A. (2018). “Inventory Management in Supply Chain,” Mater Today Proc, vol. 5, no. 2 (3867–3872). https://doi.org/10.1016/j.matpr.2017.11.641

Sofian M. I. A.Y. (2017). “Metode Peramalan Jaringan Saraf Tiruan Menggunakan Algoritma Backpropagation,” Jurnal MIPA, pp. (87–91).

Suyanto. (2021). Intelijensia Buatan. Sekolah Tinggi Teknologi Telkom,.

Varga, L., Mena, C., Yates, N. & Lusiantoro, L. (2018). “A Refined Framework Of Information Sharing In Perishable Product Supply Chains,” International Journal of Physical Distribution & Logistics Management, vol. 48, no. 3(254–283). https://doi.org/10.1108/ijpdlm-08-2017-0250

Wang , C. Y. W., Wood, C. L. & Duong, K. N. L. (2015).“A Multi-criteria Inventory Management System for Perishable & Substitutable Products,” Procedia Manuf, 2(66–76). https://doi.org/10.1016/j.promfg.2015.07.012

Yu, Y., Shen, X., & Zhou. (2023). “Inventory control strategy: based on demand forecast error,” Modern Supply Chain Research and Applications, vol. 5, no. 2 (74–101). https://doi.org/10.1108/mscra-02-2023-0009

Yudha, A. (2022). “Sistem Penyimpanan Bahan Perishable di Cold Kitchen Section Novotel Pekanbaru,” JOM FISIP, vol. 9, no. 1 (1–12).

Published
2024-02-02
How to Cite
Sabhira, C. S. (2024). Design of Forecasting for Perishable Product with Artficial Neural Network. Journal La Multiapp, 5(1), 38-43. https://doi.org/10.37899/journallamultiapp.v5i1.1000