

JOURNAL LA MULTIAPP

VOL. 06, ISSUE 06 (1380-1396), 2025 DOI: 10.37899/journallamultiapp.v6i6.2530

Comparative Analysis of the Support Capacity and Settlement of Bored Pile Foundations Using Manual Methods and Allpile Software: Case Study

Syarif Hidayatulloh¹, Maya Saridewi Pascanawaty¹, Hafiz Hamdani¹, Adryan Fitrayudha¹

¹Civil Engineering Study Program, Faculty of Engineering, Muhammadiyah University of Mataram, Indonesia

*Corresponding Author: Syarif Hidayatulloh Email: hidayatullohsyarif669@gmail.com

Article Info

Article history: Received 6 August 2025 Received in revised form 20 August 2025 Accepted 5 October 2025

Keywords: Allpile Bored Pile Bearing Capacity Settlement

Abstract

Foundations are structural elements that function to bear the load of a building and transfer it to the ground to a certain depth. Foundations must be designed so that the transferred load does not exceed the bearing capacity of the soil, as this can cause excessive settlement and lead to structural collapse. The purpose of this study is to determine the comparison of bearing capacity and settlement of bored pile foundations in the Poltekkes Kemenkes Mataram building using two approaches: the manual method and the Allpile software. The analysis was conducted based on secondary data obtained from the Detailed Engineering Design (DED), results of the Standard Penetration Test (SPT), and laboratory soil test results. The results of the manual Meyerhof method yielded an ultimate bearing capacity of 13,127.79 kN and a single pile settlement of 0.0455 m. The manual Reese and Wright method yielded an ultimate bearing capacity of 2,697.3453 kN and a single pile settlement of 0.0241 m. Meanwhile, the Allpile software calculation yielded an ultimate bearing capacity of 14,391.891 kN and a single pile settlement of 0.0027 m. All settlement values, both for single piles and groups, remain below the maximum permitted limit.

Introduction

Civil engineering is a branch of engineering that focuses on the planning, design, and maintenance of infrastructure and building structures (Zhang et al., 2021; Wang et al., 2022; Manzoor et al., 2021). A construction project is a series of related activities designed to achieve a specific construction goal, taking into account key parameters such as time constraints, costs, and quality (Prima et al., 2024). In line with government programs and as part of efforts to support development, Mataram City has also experienced growth in various sectors, such as drainage, highways, shopping centers, campuses, schools, housing, offices, and hotels (Munaroh et al., 2025; Widayanti & Witasari, 2024; Krisnanta et al., 2025).

In designing a building, the foundation is one of the elements that plays a vital role in ensuring the stability of the structure (Hu et al., 2024; Zhao et al., 2025; Hassan, 2025). The foundation is a structural element that functions to bear the load of the building and transfer it to the ground to a certain depth. The foundation must be designed so that the transferred load does not exceed the soil's bearing capacity, as this could cause excessive settlement or even structural collapse. Therefore, soil investigation is a critical stage, particularly to determine the depth of the hard soil layer. Bored pile foundations are one type of deep foundation

commonly used, especially considering the project's environmental conditions and the presence of surrounding buildings (Pribadi et al., 2023; Sushma et al., 2025; Shan et al., 2024).

With advances in technology and the emergence of new analysis methods, there are great opportunities to improve the accuracy and efficiency of foundation bearing capacity evaluations. In increasingly complex modern construction projects, in-depth knowledge of soil and foundation behavior is crucial to ensuring project success (Tan & Tiorivaldi, 2024; Alselami et al., 2025; Abualghethe et al., 2025).

This study aims to analyze the comparison of bearing capacity and foundation settlement of bored piles in the Mataram Ministry of Health Polytechnic building using two approaches, namely the manual method and Allpile software (Widiarso et al., 2025; Nurjanah, 2024; Wang et al., 2022). The analysis was carried out using the manual method, namely the Meyerhof and Reese and Wright methods, and compared with the results from Allpile software to determine the effectiveness and suitability of the calculation results from each method.

Methods

The approach applied in this study is a descriptive analysis that begins with a literature review on bored pile foundation theory, bearing capacity, and foundation settlement. Next is the collection of secondary data, which includes Detailed Engineering Design (DED) data, Standard Penetration Test (SPT) results, and soil laboratory test results. This data is used as the basis for performing calculations on the bearing capacity and settlement of bored pile foundations.

The analysis was conducted using two approaches, namely the manual approach using the Meyerhof (1976) method and the Reese and Wright (1977) method, as well as the approach using Allpile software. The calculations included pile tip bearing capacity, blanket bearing capacity, ultimate bearing capacity, allowable bearing capacity, and foundation settlement for both single and group piles.

The research location is at the Mataram Ministry of Health Polytechnic Building, located on Jalan Prabu Rangkasari, Dasan Cermen, Sandubaya District, Mataram City, West Nusa Tenggara, with geographical coordinates -8.6065360 LS and 116.1300787 BT. The location of the building can be seen in Figure 1 below:

Figure 1. Research location

Source: Google earth, 2025

Foundation bearing capacity

According to (Hardiyatmo, 2015), based on the mechanism of load transfer to the ground, poles can be divided into two types, namely: 1) End bearing piles obtain their main bearing capacity from resistance at the end of the pile. Generally, end pile resistance is located in soft

soil layers or other hard layers that have undergone consolidation and are capable of withstanding loads without causing excessive settlement. Pile capacity is determined entirely by the bearing resistance of the hard layer beneath the end of the pile; 2) A friction pile is a pile whose load-bearing capacity is determined by the frictional force between the side surface of the pile and the surrounding soil. In calculating the load-bearing capacity of a pile, it is necessary to consider the contribution of frictional resistance and the impact of soil consolidation processes beneath the pile (Cheng et al., 2024; Lu et al., 2025; Yao et al., 2023).

Soil is a natural material composed of solid mineral particles that are not chemically bound to each other, as well as organic particles that have undergone weathering (Regassa et al., 2023; Rani, 2021; Mansab et al., 2025). In addition, soil also contains liquids and gases that fill the spaces between particles (Kurniawan & Siregar, 2023). The soil must have sufficient bearing capacity to support the load transferred by the foundation, while the foundation must be strong enough to prevent excessive settlement (Azizi et al., 2020; Bouassida et al., 2022; Malviya et al., 2023). Base on (National Standardization Agency Indonesian National Standards Geotechnical Design Requirements, 2017), the bearing capacity of the foundation is obtained by dividing the ultimate bearing capacity of the foundation by the safety factor. The safety factor used is a minimum of 3 for shallow foundations or a minimum of 2.5 for deep foundations

To determine the soil elasticity modulus (Es), Poisson's ratio (μs), and Cp coefficient values, refer to Tables 1 to 3 below:

Table 1. Soil elasticity values

Soil type	Es(kN/m ²)		
Clay			
Very soft	300-3000		
Soft	3000-4000		
Currently	4500-9000		
Keras	7000-20000		
Hard	30000-42500		
Sand			
silty	5000-20000		
Not dense	10000-25000		
Dense	50000-100000		
Sand and gravel			
Dense	80000-200000		
Not dense	50000-140000		
silt	2000-20000		
Loess	15000-60000		
Flakes	140000-1400000		

Source: Bowles, 1997

Table 2. Poisson ratio values

Soil type	Poisson number
Saturated clay	0,4-0,5
Unsaturated clay	0,1-0,3
Sandy clay	0,2-0,3
Silt	0,3-0,35
Compacted sand	0,3-0,4
Coarse sand (pore count e,= 0,40-0,70)	0,15

Fine sand (pose count e,=0,40-0,70)	0,25
Stone	0,1-0,4
Loose	0,1-0,3

Source: Hardiyatmo, 2002

Table 3. Cp coefficient values

Soil type	Pile	Drill pole
Sand	0,02-0,04	0,09 - 0,18
Clay	0,02-0,03	0.03 - 0.06
Silt	0,03-0,05	0.09 - 0.12

Source: Das, 2004

Based on SPT data at the Poltekkes Kemenkes Mataram building site, the soil at the research site consists of a layer of clayey silt to a depth of \pm 2.5 m with an NSPT value of 3-5, and a layer of sandy clay at a depth of 2.5-8 m with an NSPT value of 5-39. At a depth of 8–10 meters, there is sandy clay with an NSPT value >50. At a depth >10 meters, there is sandy silt with an NSPT value >50, which has very high density and serves as the supporting layer for the pile tip. Therefore, the soil at the research site is non-cohesive soil. The foundation tip is located at a depth of 23.65 meters with an NSPT value of 50.42. The soil elasticity value used is 30,000 kN, the Poisson's ratio is 0.3, and the Cp coefficient is 0.03. These values are adjusted to the field soil conditions, which are dominated by sandy clay soil.

The foundation used has a diameter of 0.8 m and a length of 23.65 m. The concrete used has a strength of fc 28 MPa with a modulus of elasticity of the pile material (Ep) of 24870.06232 MPa. This data was obtained from the technical specifications of the Detailed Engineering Design (DED) and was used consistently throughout this calculation method.

Method Meyerhof (1976)

End bearing capacity (Qp)

The bearing capacity at the end of the pile can be determined using Meyerhof's equation (1976) as follows (Putri, 2025). The bearing capacity of the pile tip using the Meyerhof method can be calculated using equations 1 to 3.

$$Qp = Ap \times qp \tag{1}$$

$$Ap = \frac{1}{4}\pi \times D^2$$
 (2)

$$qp = 0.4 \times N60 \times (L/D) \times \sigma r \le 4 \times N60 \times \sigma r \tag{3}$$

With:

Qp = End support capacity (kN)

qp = Wide end restraint (kN/m²)

Ap = Cross-sectional area of pole tip (m^2)

N60 = Value N-SPT

D = pole diameter (m)

L = pole length (m)

σr = reference voltage = 100 Kpa

Blanket carrying capacity (Qs)

The carrying capacity of the Meyerhof method blanket can be calculated using equations 4 to 6.

$$Qs = As x fs (4)$$

$$As = \pi x D x L \tag{5}$$

fs =
$$1/100 \times \sigma r \times N60$$
 (6)

With:

Qs = blanket support (KN)

As = Area of pole cover (m^2)

fs = friction from the blanket layer of the union pole area (KN)

D = Pole diameter (m)

L = Pole length (m)

N60 = value N-SPT

σr = reference voltage = 100 Kpa

Metode Reese dan Wright (1977)

End bearing capacity (Qp)

Daya dukung ujung tiang berdasarkan metode Resse and Wright dapat dihitung dengan persamaan 7 sampai dengan persamaan 9.

$$Qp = Ap \times qp \tag{7}$$

$$Ap = \frac{1}{4}\pi \times D^2 \tag{8}$$

For cohesive soil

 $qp = 9 \times Cu$

Cu = 2/3 x NSPT x 10

For non-cohesive soil

qp =
$$7N \text{ kN} \le 4000 \text{ kN}, \text{ if N} < 60$$
 (9)
= $4000 \text{ kN}, \text{ if } > 60$

With:

Qp = end support (kN)

Ap = cross-sectional area of bored pile (m^2)

qp = end resistance per unit area (ton/m²)

Cu = soil cohesion

Blanket carrying capacity (Qs)

The carrying capacity of the Reese and Wright method can be calculated using equations 10 to 13.

$$Q_S = f_S \times A_S \tag{10}$$

fs =
$$0.32$$
N, if N < 53 (11)

= 1/34N, if $53 < N \le 100$

1384

$$As = L x p (12)$$

$$p = \pi D \tag{13}$$

With:

Qs = support capacity of pole covers (kN)

fs = friction from the friction layer of the wide union pole (kN)

As = Area of pole cover (m^2)

L = drill rod length (m)

p = circumference of the pole cross section (m)

D = Pole diameter (m)

Ultimate bearing capacity

Ultimate bearing capacity can be calculated using equation 14.

$$Qu = Qp + Qs (14)$$

With:

Qu = ultimate bearing capacity (kN)

Qp = ultimate bearing capacity (kN)

Qs = support capacity of pole cover (kN)

Permit carrying capacity

Permit carrying capacity can be calculated using equation 15.

$$Qall = \frac{Qu}{Sf}$$
 (15)

With:

Qall = permit capacity

Qu = ultimate bearing capacity

Sf = security factor

Foundation settlement

Foundation settlement occurs due to the load above the foundation, which causes stress on the soil layer beneath the load. Elastic settlement of pile foundations is the vertical displacement of piles due to elastic deformation of the surrounding soil when receiving loads (Khairunnisa, 2025). When soil receives a load, it will experience deformation or settlement. Settlement is caused by changes in the soil structure, either due to shifts in particle arrangement or a reduction in pore space or water content within the soil (Fadilah & Tunafiah, 2018). The settlement of a single pile foundation can be calculated using equations 16 to 20.

$$S = S_S + S_P + S_{PS} \tag{16}$$

$$Ss = \frac{(Qp + (\alpha Qs))L}{Ap \times Ep}$$
 (17)

$$Sp = \frac{Cp \times Qp}{D \times qp} \tag{18}$$

$$Sps = \left(\frac{Qp}{p_X L}\right) x \frac{D}{ES} x \left(1 - \mu_S^2\right) I_{WS}$$
 (19)

$$I_{ws} = 2 + 0.35 \sqrt{\frac{L}{D}}$$
 (20)

1385

 $S_{total} \leq S_{permission}$

 $S_{total} \leq 10\%D$

With:

S = Settlement of single pile foundations

Ss = Settlement due to axial deformation of a single column (m)

Sp = Decrease due to load at the end of the pole (m)

Sps = Decrease due to load along the pole (m)

Qp = End bearing capacity (kN)

Qs = Support capacity of pole covers (kN)

L = Pole length (m)

Ap = Area of the pole tip (m^2)

Ep = Elastic modulus of pile material

 α = 0.5 (for uniform friction distribution)

Cp = empirical coefficient (Cp coefficient can be seen in Table 3)

D = Pole diameter (m)

Qp = End post restraint (kN)

P = Circumference of pole cross section (m)

Es = Soil elasticity modulus (soil elasticity modulus can be seen in Table 1)

 μ = Poisson number (Poisson numbers can be seen in Table 2)

 I_{ws} = Influencing factors

Settlement of pile group foundations

To determine the simplest reduction in pile group allowances, Vesic (1969) proposed $Sg \le 10\%D$ (Yelvi et al., 2022). The settlement of pile group foundations can be calculated using equation 21.

$$Sg = S \sqrt{\frac{B}{I}}$$
 (21)

With:

Sg = Settlement of pile group foundations (m)

S = Settlement of single pile foundations (m)

B = Width of the ballot paper (m)

L = Pole length (m)

Software Allpile

AllPile software is a program that efficiently and accurately analyzes pile load capacity. This software can analyze various types of foundations such as bored piles, auger piles, driven piles, H-piles, steel pipe piles, tapered piles, wooden piles, bell piles, shallow foundations, etc (Rahmat Waluyo & Triarso, 2023). In the Allpile program, calculations are performed through six stages of data entry, namely: pile type, pile profile, pile properties, load and group configuration, soil properties, and advanced settings (Fabian et al., 2019). Program ini mampu This program is capable of performing the following calculations: 1) Capacity and lateral

deflection; 2) Capacity and vertical drop; 3) Vertical and lateral analysis of groups; 4) Static and cyclic conditions; 5) Negative and zero friction; 6) Shallow footing; 7) FHWA SHAFT Program; 8) Tower Foundation.

The initial menu screen of the Allpile software can be seen in Figure 2 below:

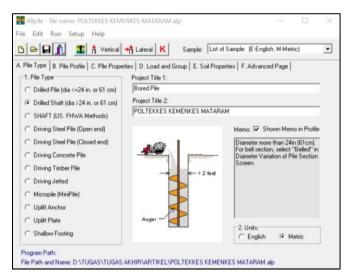


Figure 2. Allpile software start menu

Source: Allpile software, 2025

Results and Discussion

Calculation of bored pile foundation bearing capacity

Calculating the bearing capacity of the pile tip (Qp) Meyerhof (1976)

Ap
$$= \frac{1}{4} \times 3,14 \times 0,8^2$$

 $= 0,5024 \text{ m}^2$
qp $= 0,4 \times 50,42 (23,65/0,8) \times 100 \le 4 \times 50,42 \times 100$
 $= 59621 \text{ kN/m}^2 \le 20168 \text{ kN (Use the smallest value)}$
qp $= 20168 \text{ KN}$
Qp $= 0,5024 \text{ m}^2 \times 20168 \text{ kN}$
 $= 10132,40 \text{ kN}$

Calculating the carrying capacity of blankets (Qs) Meyerhof (1976)

As =
$$3,14 \times 0,8 \times 23,65$$

= $59,4088 \text{ m}^2$
fs = $1/100 \times 100 \times 50,42$
= $50,42 \text{ kN/m}^2$
Qs = $59,4088 \times 50,42$
= $2995,39 \text{ kN}$

Calculating ultimate bearing capacity

$$Qu = 10132,40 + 2995,39$$

$$= 13127.79 \text{ kN}$$

Calculating permit carrying capacity

Qall
$$=\frac{13127,79}{2,5}$$

= 5251,116 kN

Calculating the bearing capacity of the pile tip (Qp) Reese and Wright (1977)

Ap
$$= \frac{1}{4} \times 3,14 \times 0,8^{2}$$

$$= 0,5024 \text{ m}^{2}$$

$$qp = 7N \text{ kN} \le 4000 \text{ kN}$$

$$= 3529,4 \text{ kN} \le 4000 \text{ kN}$$

$$Qp = 0,5024 \text{ m}^{2} \times 3529,4 \text{ kN}$$

$$= 1773,17 \text{ kN}$$

Calculating blanket carrying capacity (Qs) Reese and Wright (1977)

Calculating ultimate bearing capacity

Qu =
$$1738,82 + 958,5253$$

= $2697,3453 \text{ kN}$

Calculating permit carrying capacity

Qall
$$=\frac{2697,3453}{2,5}$$

= 1078,9381 kN

Allpile software

Data processing in Allpile software is carried out by inputting field data from Standard Penetration Test (SPT) and Detailed Engineering Design (DED) data. The data is inputted into six stages in Allpile software. The stages and data inputted are as follows:

1. Pile type

Drilled shaft (diameter > 24 inc or 61 cm)

2. Pile profil

Pile length (L) = 23,65m

- 3. Pile properties
- a) select shape (circle)
- b) outside (concrete)
- c) inside (steel)
- d) diameter variation (straight)
- e) crack deduction % (0)
- f) bar size = (22mm), bar number = (20)
- g) width = (80cm)
 - 4. Load and group
- a) single pile (fixed head)
- b) group piles (fixed head)
 - 5. Soil properties
- a) Zs-m, (0), soft clay, NSPT = 1
- b) Zs-m, (4), soft clay, NSPT = 6
- c) Zs-m, (8), stiff clay, NSPT = 39
- d) Zs-m, (12), silt, NSPT = 60
- e) Zs-m, (16), silt, NSPT = 50
- f) Zs-m, (20), silt, NSPT = 43
- g) Zs-m, (23,65), silt, NSPT = 50
 - 6. Advanced page

FS side (2,5)

Based on the data entered into the Allpile software, the results obtained are as follows:

$$Qp = 10484,092 \text{ kN}$$

$$Qs = 3907,891 \text{ kN}$$

$$Qu = 14391,891 \text{ kN}$$

Oall =
$$6147.536 \text{ kN}$$

Foundation Settlement

Calculation of foundation settlement for single piles Meyerhof (1976)

Ss
$$= \frac{(10132,40 + (0,5 \times 2995,39))23,65}{0,5024 \, m2 \times 24870062,32 \, KN}$$
$$= 0,0220 \, \text{m}$$
$$\text{Sp} = \frac{0,03 \times 10132,40}{0,8 \times 20168}$$
$$= 0,0188 \, \text{m}$$
$$I_{WS} = 2+0,35 \, \sqrt{\frac{23,65}{0,8}}$$
$$= 3,9029$$

Sps =
$$\left(\frac{2995,39}{2,512 \times 23,65}\right) \times \frac{0,8}{30000} \times (1-0,3^2) \times 3,9029$$

= $0,0047 \text{ m}$
S = $0,0220 + 0,0188 + 0,0047$
= $0,0455 \text{ m}$

 $S_{total} \le 10\% 0.8$

 $0.0455 \text{m} \le 0.08 \text{m}$ OK

Calculation of single pile foundation settlement Reese and Wright (1977)

Ss =
$$\frac{(1738,32 + (0,5 \times 958,5253))23,65}{0,5024 m2 \times 24870062,32 KN}$$

=0,0042 m
Sp = $\frac{0,03 \times 1738,32}{0,8 \times 3529,4}$
= 0,0184 m
 I_{WS} = $2 + 0,35 \sqrt{\frac{23,65}{0,8}}$
= 3,9029
Sps = $(\frac{958,5253}{2,512 \times 23,65}) \times \frac{0,8}{30000} \times (1 - 0,3^2) \times 3,9029$
= 0,0015 m
S = 0,0042 + 0,0184 + 0,0015
= 0,0241 m
 $S_{total} \le 10\% 0,8$

 $0.0241 \text{m} \le 0.08 \text{m}$ OK

Calculation of single pile foundation settlement Allpile Software

Based on the results of the analysis from the Allpile software with the data that has been input, the single pile settlement obtained is 0.0027 m. The allowable settlement in the Allpile software is 2.54 cm.

 $S \le 2,54 \text{ cm}$

 $0.0027 \text{ m} \le 0.0254 \text{ m OK}$

Settlement of pile group foundations

Meyerhof (1976)

Sg =
$$0.0455 \sqrt{\frac{6.8}{23.65}}$$

= 0.0243 m

 $Sg \le 10\% 0.8$

 $0.0243 \text{m} \le 0.08 \text{m}$ OK

Reese and Wright (1977)

Sg =
$$0.0241 \sqrt{\frac{6.8}{23.65}}$$

= 0.0129 m

1390

 $Sg \le 10\% 0.8$

 $0.0129 \text{m} \le 0.08 \text{m}$ OK

Allpile software

Based on the results of the analysis from the Allpile software with the data that has been input, the group pile settlement was obtained at 0.0003 m. The permissible settlement in the Allpile software is 2.54 cm.

S < 2.54 cm

 $0,0003 \text{ m} \le 0,0254 \text{m} \text{ OK}$

The recapitulation of the results of the bearing capacity calculation and bored pile foundation settlement using two approaches, namely the Meyerhof and Reese and Wright manual methods and the Allpile software approach, can be seen in Tables 4 and 5 below:

Table 4. Summary of foundation bearing capacity calculation results

Method	Qp (kN)	Qs (kN)	Qu (kN)	Qall (kN)
Meyerhof	10132,40	2995,39	13127,79	5251,116
Reese and Wright	1773,17	958,5253	2697,3453	1078,9381
Allpile software	10484,092	3907,891	14391,891	6147,536

Source: Author, 2025

Table 5. Recapitulation of the results of calculations for single and group foundation settlement

Method	S (m)	Sg (m)
Meyerhof	0,0455	0,0243
Reese and Wright	0,0241	0,0129
Allpile software	0,0027	0,0003

Source: Author, 2025

From the summary of the calculation results in Table 4, different ultimate bearing capacities were obtained for each method used. The Meyerhof method produced an ultimate bearing capacity of 13,127.78 kN, the Reese and Wright method produced 2,697.3453 kN, and the Allpile software showed an ultimate bearing capacity of 14,391.891 kN.

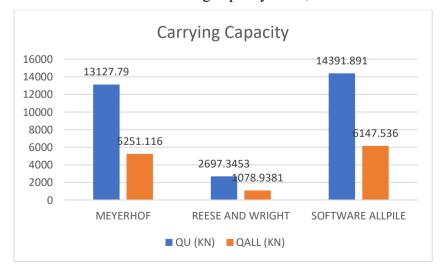


Figure 3. Carrying capacity

Source: Author, 2025

The difference between the Meyerhof and Reese and Wright methods is 10,430.44 kN or 386.8%, while the difference between the Allpile software and the Meyerhof method is 1,264.10 kN or 9.63%, and the difference between the Allpile software and Reese and Wright is 11,694.54 kN or 433.3%. When compared to the existing bearing capacity data for the Poltekkes Kemenkes Mataram building, which is 5,297.7 kN, the Meyerhof method is higher by 7,830.09 kN or 147.8%, the Reese and Wright method is lower by 2,600.35 kN or 49.1%, and the Allpile software is higher by 9,094.19 kN or 171.7%. The ultimate carrying capacity and permit carrying capacity graphs can be seen in graph 3.

From the recapitulation of the calculation results in Table 5, the results of single and group foundation settlement were obtained. The Meyerhof method produced a single settlement of 0.0455 m, the Reese and Wright method produced 0.0241 m, and the Allpile software produced 0.0027 m. The difference in single foundation settlement between the Meyerhof and Reese and Wright methods is 0.0214 m or 47.03%, while the difference between the Allpile software and the Meyerhof method is 0.0428 m or 94.06%, and the difference between the Allpile software and the Reese and Wright method is 0.0214 m or 88.79%. For group pile settlement, the Meyerhof method is 0.0243 m, the Reese and Wright method is 0.0129 m, and the Allpile software is 0.0003 m. The difference in foundation settlement between the Meyerhof method and the Reese and Wright method is 0.0114 m or 46.91%, while the difference between the Allpile software and the Meyerhof method is 0.0240 m or 98.76%, and the difference between the Allpile software and the Reese and Wright method is 0.0126 m or 95.34%. The graphs showing the settlement of single pile foundations and group pile foundations can be seen in graph 4 below:

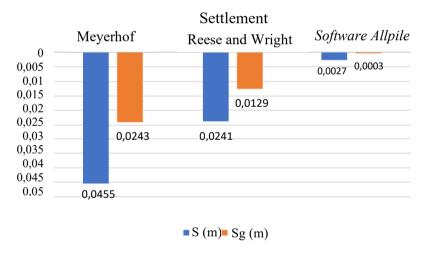


Figure 4. Settlement of single poles and group foundations

Source: Author, 2025

The differences in results between methods are due to differences in analytical approaches and parameters used. The Reese and Wright method shows the lowest bearing capacity results because it only uses an empirical correlation approach between NSPT values and soil bearing capacity without explicitly considering the characteristics of soil layers. The Meyerhof method yields higher results because it combines an empirical approach with pile geometry factors such as length and diameter, as well as soil reference stress. The results from the Allpile software show the highest values because it uses a discrete element-based approach and considers detailed geotechnical parameters such as soil specifications, soil elastic modulus, Poisson's ratio, and foundation material.

The foundation settlement produced by the Allpile software shows the smallest value even though the ultimate bearing capacity calculated is greater than that of the manual method.

This occurs because the Allpile software's numerical analysis approach takes into account the detailed soil parameters of each layer and the characteristics of the pile material. In contrast, manual methods such as Meyerhof and Reese and Wright use a simple empirical approach. The Meyerhof method produces a load nearly four times larger than Reese and Wright, but the resulting settlement is only twice as large. This also indicates that an increase in load does not always correlate directly with settlement, so a load five times larger does not directly result in a fivefold increase in settlement. Settlement is significantly influenced by other parameters, such as the bearing capacity at the tip and the bearing capacity of the soil layer, which directly factor into the settlement calculations. The magnitude of settlement is also influenced by soil elasticity parameters, pile length, and load distribution along the pile.

Conclusion

Based on the results of the comparative analysis of bearing capacity and foundation settlement for the Poltekkes Kemenkes Mataram building using the manual Meyerhof and Reese and Wright methods, as well as the Allpile software, it can be concluded that the ultimate bearing capacity using the Meyerhof method is 13,127.79 kN and the allowable bearing capacity is 5,251.116 kN, while the Reese and Wright method yields an ultimate bearing capacity of 2,697.3454 kN and a allowable bearing capacity of 1,078.9381 kN. The results from the Allpile software show an ultimate bearing capacity of 14,391.891 kN and an allowable bearing capacity of 6,147.536 kN. The largest single pile settlement was obtained from the Meyerhof method calculation, which was 0.0487 m, while the smallest result was from the Allpile software, which was 0.0027 m. All settlement values, both for single piles and groups, remain below the maximum allowed limit. Calculations using the Allpile software show larger and more realistic results for field conditions because they consider more geotechnical parameters. Meanwhile, manual methods such as Meyerhof and Reese and Wright remain relevant for initial calculations or comparisons.

Acknowledgment

The author would like to thank Muhammadiyah University Mataram for its support through the Civil Engineering Study Program as a final project for undergraduate students, and the project implementation team for providing Standard Penetration Test data and laboratory test results, which formed the basis of this study.

References

- Abualghethe, D. A., Mu, B., Dai, G., Liu, S., Li, Z., Liu, S., & Han, L. (2025). Optimization of reinforced ring base depth for vertical shaft sinking in soft soil using VSM method. *Underground*Space, 22, 280-302. https://doi.org/10.1016/j.undsp.2024.12.005
- Alselami, N., Aati, K., Mutnbak, M., Alrasheed, K. A., & Khan, M. B. (2025). Impact of the Application of Smart Sensor Networks for the Construction Management of Geotechnical Activities. *Civil Engineering Journal (Iran)*, 11(1), 346-368. https://doi.org/10.28991/CEJ-2025-011-01-020
- Azizi, A., Salim, A. M., & Ramadhon, G. (2020). Analisis daya dukung dan peunurunan pondasi tiang pancang proyek gedung DPRD kabupaten pemalang. http://ejournal.um-sorong.ac.id/index.php/rancangbangun.
- Bouassida, M., Fattah, M. Y., & Mezni, N. (2022). Bearing capacity of foundation on soil reinforced by deep mixing columns. *Geomechanics and Geoengineering*, 17(1), 309-320. https://doi.org/10.1080/17486025.2020.1755458

- Cheng, X., Wang, H., Gong, L., & Zhou, Y. (2024). Study on bearing capacity characteristics of Cement-Flyash-Gravel piles and cement-soil compacted piles in composite foundations. *Engineering Research Express*, 6(4), 045103. https://doi.org/10.1088/2631-8695/ad7e7c
- Fabian, G. R., Manoppo, J., & Mandagi, A. T. (2019). Analisis Daya Dukung Pondasi Jembatan Gorr I. Jurnal Sipil Statik, 7(4), 397–408. https://dl.wqtxts1xzle7.cloudfront.net.
- Fadilah, U. N., & Tunafiah, H. (2018). Analisa Daya Dukung Pondasi Bored Pile Berdasarkan Data N-SPT Menurut Rumus Reese&Wright Dan Penurunan. IKRA-ITH Teknologi Jurnal Sains Dan Teknologi, 2(3), 7–13. https://journals.upi-yai.ac.id.
- Hassan, A. (2025). Advancements in Foundation Design for High-Rise Buildings. *Power System Technology*, 19(1).
- Hu, C., Hu, Y., Zhang, B., Zhang, H., Bao, X., Zhang, J., & Yuan, P. (2024). Advanced catalyst design strategies and in-situ characterization techniques for enhancing electrocatalytic activity and stability of oxygen evolution reaction. *Electrochemical Energy Reviews*, 7(1), 19. https://doi.org/10.1007/s41918-024-00219-8
- Khairunnisa, J. (2025). Analisis Daya Dukung Pondasi Bored Pile Berdasarkan Data Spt Pada Proyek Pembangunan Rsud Kota Yogyakarta (Analysis Of Bored Pile Foundation Bearing Capabilities Based On Spt Data On The Yogyakarta City Regional Hospital Construction Project). https://dspace.uii.ac.id/handle/123456789/54767.
- Krisnanta, A. D., Hasibuan, H. S., & Tambunan, R. P. (2025). Impact of regional infrastructure development on urbanization and environment in the northern coastal region of Central Java, Indonesia. *Sustainable and Resilient Infrastructure*, 1-18. https://doi.org/10.1080/23789689.2025.2546178
- Kurniawan, F. R., & Siregar, C. A. (2023). Mayerhoff Analisis Daya Dukung Fondasi Tiang Pancang Dengan Menggunakan Metode Dan Menggunakan Aplikasi Allpile (Vol. 3, Issue SIMTEKS). Bulan Maret Tahun. https://doi.org/10.32897/simteks.v3i1.1249.
- Lu, Y., Zhang, Y., Mei, G., El Naggar, M. H., & Wu, W. (2025). Numerical Analysis of Soil Consolidation and Time-Dependent Skin Friction Mobilization Around Permeable Pipe Pile. *International Journal for Numerical and Analytical Methods in Geomechanics*, 49(15), 3452-3470. https://doi.org/10.1002/nag.70028
- Malviya, D. K., Ansari, A., & Samanta, M. (2023). Settlement and load sharing behavior of piled raft foundation: a review. *Innovative Infrastructure Solutions*, 8(11), 305. https://doi.org/10.1007/s41062-023-01272-w
- Mansab, S., Parveen, K., & Nasreen, S. (2025). Understanding Soil Composition: Its Effect on Plant Development. In *Soils and Sustainable Agriculture: Interplay of Soil, Plant, Water and Environmental Systems for Sustainable Agriculture* (pp. 27-55). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-91114-9 3
- Manzoor, B., Othman, I., Durdyev, S., Ismail, S., & Wahab, M. H. (2021). Influence of artificial intelligence in civil engineering toward sustainable development—a systematic literature review. *Applied System Innovation*, 4(3), 52. https://doi.org/10.3390/asi4030052
- Munaroh, H., Darmiyanti, L., & Artiani, G. P. (2025). Analisis Daya Dukung Pondasi Bored Pile Pada Proyek Proklamasi STATUSI ARTIKELI. In *Surabaya Jurnal Anggapai* (Vol. 1, Issue 1). https://doi.org/10.61293/anggapa.v4i1.694.

- Nurjanah, A. (2024). Analysis of bearing capacity of pile foundations using analytical method and finite element method. *Eduvest-Journal of Universal Studies*, 4(5), 3960-3979. https://doi.org/10.59188/eduvest.v4i4.1190
- Pribadi, G., Prima, Y., & Rumbyarso, A. (2023). Jurnal Teslink: Teknik Sipil dan Lingkungan Analisis Perbandingan Daya Dukung dan Penurunan Pondasi Tiang Bor Dengan Perhitungan Manual dan Software ALLPILE. *5*(2), 16–20. https://doi.org/10.52005/teslink.v115i1.xxx.
- Prima, Y., Rumbyarso, A., & Pribadi, G. (2024). Pasak: Jurnal Teknik Sipil dan Bangunan Analisis Kapasitas Daya Dukung Bore Pile Pada Proyek Gedung Fakultas Hukum Unisulla Semarang Jawa Tengah. 2(1), 1–5. https://doi.org/10.32699.
- Putri, A. (2025). Analisis Kapasitas Dukung Dan Penurunan Fondasi Tiang Bor Dengan Variasi Diameter (Analysis Of Diameter On Bearing Capacity And Settlement Of Bored Pile Foundations). https://dspace.uii.ac.id/handle/123456789/55299.
- Rahmat Waluyo, Y., & Triarso, A. (2023). Perbandingan Daya Dukung Tiang Pancang Metode Manual Dengan Software AllPile V.7 (Studi Kasus Rusun Pemkot Semarang Tower 4) (Vol. 1, Issue 3). https://ejournal.unesa.ac.id/index.php/viteks/article/view/56648.
- Rani, S. (2021). Clay mineralogy: soil carbon stabilization and organic matter interaction. In *Soil Carbon Stabilization to Mitigate Climate Change* (pp. 83-123). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-33-6765-4 3
- Regassa, A., Kibret, K., Selassie, Y. G., Kiflu, A., & Tena, W. (2023). Soil properties. In *The Soils of Ethiopia* (pp. 111-156). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-17012-6-7
- Shan, H. F., Yu, F., He, S. H., & Xia, T. D. (2024). Influence of Soil Excavation on Bearing Behavior of Pile Group Foundation Composed of Underpinning Piles and Existing Piles. *Journal of Testing and Evaluation*, 52(2), 1021-1034. https://doi.org/10.1520/JTE20230236
- Sushma, B. V., De, M. K., & Kumar, T. S. (2025). Shallow and Deep Foundation Systems: A New Approach Factoring in Construction Practice, Stress Interference Mapping and Sustainability Features. *Indian Geotechnical Journal*, 1-11. https://doi.org/10.1007/s40098-025-01357-6
- Tan, A., & Tiorivaldi. (2024). Studi Komparasi Daya Dukung Fondasi dengan Metode Manual dan Allpile Fondasi Rumah tipe 100 di Green Garden Regency Kota Gresik. Jurnal Teknik Sipil Macca, 9(3), 201. https://doi.org/10.33096/dt65vn59.
- Wang, C., Tang, Y., Kassem, M. A., Li, H., & Hua, B. (2022). Application of VR technology in civil engineering education. *Computer Applications in Engineering Education*, 30(2), 335-348. https://doi.org/10.1002/cae.22458
- Wang, M., Wang, M., Cheng, X., Lu, Q., & Lu, J. (2022). A new p–y curve for laterally loaded large-diameter monopiles in soft clays. *Sustainability*, *14*(22), 15102. https://doi.org/10.3390/su142215102
- Widayanti, I. R., & Witasari, N. (2024). PERMUKIMAN EROPA SEKITAR TOENTANGSCHEWEG KOTA SALATIGA 1917-1942. Siginjai: Jurnal Sejarah, 4(2). https://doi.org/10.22437/js.v4i2.36224
- Widiarso, D. A., Herlambang, F. G. S., Trisnawati, D., Qadaryati, N., & Haryanto, W. (2025). Soil Bearing Capacity Analysis To Determine Pile Foundation Design On Alluvial Soils In Semarang City, Indonesia. *Geomate Journal*, 28(129), 10-20.

- Yao, Y., Hong, B., Liu, X., Wang, G., Shao, Z., & Sun, D. (2023). Field and numerical study of the bearing capacity of pre-stressed high-strength concrete (PHC)-pipe-pile-reinforced soft soil foundations with tie beams. *Applied Sciences*, *13*(21), 11786. https://doi.org/10.3390/app132111786
- Yelvi, Farid Habibie, M., & Agung Maha Agung, P. (2022). Construction and Material Journal Perbandingan Daya Dukung Fondasi Tiang Bor. https://doi.org/10.32722/cmj.v4i3.4768.
- Zhang, W. H., Lu, D. G., Qin, J., Thöns, S., & Faber, M. H. (2021). Value of information analysis in civil and infrastructure engineering: a review. *Journal of Infrastructure Preservation and Resilience*, 2(1), 16. https://doi.org/10.1186/s43065-021-00027-0
- Zhao, J., Wang, X., Tan, Z., Zhang, X., & Xiao, X. (2025). Excavation Optimization for Asymmetrical Deep Foundation Pits Adjacent to Subway Stations: Deformation Control and Safety Enhancement. *International Journal of Geomechanics*, 25(12), 05025010. https://doi.org/10.1061/IJGNAI.GMENG-11305