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 Abstract  
The distinctive requirements, educational attainment, and learning 

response of the learners are the critical key issues in the e-learning 

system. This goal is achieved by identifying the students' diverse 

assessments of their identity and capabilities and assigning them 

appropriate learning materials, as indicated by these highlights. The 

present paper introduces an efficient learning system that optimizes the 

sequencing of Learning Objects (LOs) in an e-learning system. Learning 

Objects (LOs) are educational materials typically divided into 

components. The procedure is performed by sequencing the learning 

objects of pupils or learners, and the sequence represents the organized 

arrangement of LOs. The sequencing problem can be considered a 

Constraint Satisfaction Problem (CSP) due to the utilization of the 

competency to characterize the correlation among LOs. The Human 

Behavior-based Particle Swarm Optimization (HPSO) algorithm can be 

employed to solve the problem using a swarm intelligence scheme. 

Results indicate that the algorithm is more effective in resolving the 

matter. 

Introduction 

Within an e-learning system, Learning Objects (LOs) illustrate all actions (Alnawas et al., 

2022). The method encourages the creation of learning objects (LOs) as minimal educational 

units. Subsequently, the learning objectives are gathered and further consolidated to create 

larger instructional units (Govindasamy, 2001; Malalla & Ali, 2020). Learning objectives 

must be systematically arranged before transmission to learners (Kwon et al., 2021). 

Sequencing is now conducted by educators who do not create individualized progressions for 

each student; instead, they develop generic curricula aimed at traditional student profiles. 

Subsequently, these arrangements are encoded using a specific standard to ensure 

collaboration (Rezat et al., 2021). The metadata methodologies provide enhanced 

opportunities that will facilitate an automated sequencing process (Sasse et al., 2022). 

Furthermore, integrating metadata and competence will enable personalized and automated 

meaning sequencing (Rashid et al., 2024). We delineate the most efficacious approach to 

address these challenges by defining a conceptual framework for global idea dissemination 

about the sequences of LO via competence (Zhao et al., 2022). The quintessential illustration 

of cooperative behavior among individuals, communities, and society (Culp & Goodman, 

2023). Nature-inspired algorithms have emerged as an effective optimization strategy 

(Tzanetos & Dounias, 2021). Human behavior-based particle swarm optimization (HPSO) is 
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a robust optimization technique for addressing complex issues (Mohammed et al., 2021; Liu 

et al., 2014). 

This work introduces a novel sequencing strategy that employs an e-learning system and a 

learning object model to facilitate and ensure collaboration (Ismail, 2001; Islam, 2013). 

Learning object sequences are defined by competencies and the HPSO algorithm (Mane & 

Gaikwad, 2014; Wahyuningsih et al., 2024; Ye, 2015). 

The competence refers to the register including the understanding of competencies. Each 

competency may be shown in at least one distinct "Context “Furthermore, a compilation of 

empirical data is used to "validate" if an agent has acquired the given ability.  "Dimensions" 

are used to integrate each state with its corresponding evidence and to retain associated data, 

such as the capacity level (Stetler et al., 2009; Demetriou et al., 2002). Figure 1 illustrates the 

notion of a competence model. 

 

Figure 1. the concept of competency model 

By defining a skill, or a collection of competencies, as a learning outcome (LO), and further 

distinguishing this competency from other fundamental LOs as seen in Figure 2, the first LO 

must precede the subsequent LO in an appropriate sequence. Consequently, a limitation 

between two learning objectives is established (Andresen, 2009; Tisch & Metternich, 2017). 

Figure 2 illustrates the sequencing of learning outcomes across skills. 

 

Figure 2. Sequencing Learning Objectives Through Competencies 

In addition, that's useful for demonstrating requirements and learning output, additionally the 

competencies are helpful for displaying user current information and taking in activities' 

normal results (future student learning) (Domínguez et al., 2013; Bingimlas, 2009). 

1.2 Competency Based Intelligent Sequence 

To find a right arrangement can be visualized as Constraint Satisfaction Problem (CSP). So 

that, the arrangement area includes, all potential sequences and requiring all founded 

restrictions (Brailsford et al., 1999). LO grouping are the activities that characterize advances 

among states. HPSO is an optimization scheme that can be utilized to preform CSP (Bulatov, 

2011). 
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Related Works 

An enhanced version of Particle Swarm Optimization (PSO) that incorporates human 

behavior have been proposed. The new approach, called Social Particle Swarm Optimization 

(SPSO), only allows particles to learn from the best particles in the swarm, namely Pbest 

(personal best) and Gbest (global best). This design reflects an ideal social condition. 

However, considering real-life human behavior, it is evident that some individuals exhibit 

negative behavior patterns or practices that can have adverse effects on those around them. It 

is important to acknowledge and be cautious of these negative patterns or practices. 

Conversely, it would be detrimental to learn from such unfortunate tendencies or practices. 

Thus, it is more beneficial to adopt an objective perspective towards these negative behavior 

patterns or practices.  

To address this, HPSO (Human Behavior-based Particle Swarm Optimization) introduces the 

concept of the global worst position, representing the worst fitness value within the entire 

population at each iteration (Liu et al., 2014). An hybrid optimization algorithm that combines 

Particle Swarm Optimization (PSO) with Cultural Algorithm (CA) have been proposed. The 

CA component incorporates cultural knowledge to guide the search process and improve the 

performance of PSO (Stanley et al., 2020) A cooperative approach to Particle Swarm 

Optimization have been introduced.  

The algorithm enhances the communication and cooperation among particles in the swarm by 

allowing them to share information and learn from each other during the optimization process 

(Li et al., 2022) .A machine learning-based system called DRFLO, which helps course 

designers retrieve relevant Learning Objects (LOs) for course design in Technology Enhanced 

Learning (TEL) have been proposed. DRFLO uses machine learning and filters to recommend 

context-aware LOs, overcoming challenges posed by diverse LO repositories and varied LO 

semantics. Pre-test and post-test experiments validate the effectiveness of DRFLO, making it 

a valuable tool for designing customized courses while reusing existing LOs (Tahir et al., 

2022). 

Two distinct metaheuristic algorithms, PSO and Jaya, for the automated formation of student 

groups in an e-learning system have been introduced. The algorithms take into account pre-

test scores, learning experiences, and pre-test durations to establish collaborative learning 

groups. The discrete Jaya algorithm frequently surpasses the discrete PSO algorithm 

regarding solution quality and resilience. The suggested DJaya algorithm is advocated for the 

formation of collaborative student groups in distant education systems (Gavrilovic et al., 

2022). 

Methods  

HPSO algorithm was performed to check the performance of LO sequencing solved problem. 

The inertia weight (w) in the range [0.9,0.4].  30 particles were set as an initial population. 

Initialization begins within an initial random sequence “I” that use as an input of the first 

particle. Where "I" is the total number of LO sequence.  

Also, the maximum quantity of iterations was outlined as parameter. The process is updated 

until the termination condition is met. Whereas some problems with no arrangement, so the 

quantity of iterations setting can avert infinite loops. Figure (3) show the block diagram of 

HPSO sequencing algorithm. 
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Figure 3. block diagram of HPSO sequencing algorithm. 

This block diagram provides a general overview of the main components and their 

relationships. Each block represents a specific action or operation, and the arrows indicate the 

order in which the steps are performed. The loop structure is represented by the "Start Loop" 

and "End Loop" blocks, encompassing the steps that need to be repeated until the termination 

condition is met. 

 

Figure 4. HPSO sequencing algorithm 

initialize the population  

do {  

    for each particle {  

                   compute the value of fitness function  

                  if (Xnew <= Gbest)  

                  set Gbest = Xnew 

                  if (Xnew >= Gworst)  

                  set Gworst = Xnew  

                  compute new velocity as  

                   V next  = w × V previous+ (r1×(pbest-Xnew)) + (r2×(Gbest-Xnew)) + 

(r3×(Gworst-Xnew)) 

                                   Update particle value  

                                   for i = 1 to length(V) 

                                      {  

                                        if(rand() < 0.5)  

                                           swap X[i] for                   

                                           X[i] =(X,Gbest [i])  

                                       else  

                                           swap X[i] for                            

                                           X[i] =(X,Gworst[i]) 

                                        }  

                                    Check Mutation  

                                    if (Xnew = Gbest or Xnew =Gworst) swap two   

                                    random positions from Xnew 

                                   }  

    } until termination condition is met 
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Whereas the Xnew represents the current position of the particle.  Vnext , Vprevious represent 

the velocity of the particle. r1, r2 are two random number in the range [0,1] where r1+r2 =1, 

r3. It adheres to the typical normal distribution and may equilibrate exploration and 

exploitation capabilities by altering the flight direction of particles. The random parameters 

r1 and r2 balance exploration and exploitation in the Human Behaviour-based Particle Swarm 

Optimization (HPSO) algorithm through their control of cognitive and social movements of 

particles. The first random parameter r1 determines how much the particle will examine its 

personal best position and the second parameter r2 shows how much it will track the swarm's 

best knowledge for social learning. The condition r1 + r2 = 1 creates a normalized weighting 

system that stops movements from becoming extreme. The algorithm controls exploration-

exploitation balance through these parameter adjustments because greater r_1 helps extend 

search space exploration yet slows convergence while higher r2 promotes more rapid 

convergence yet increases the risk of premature suboptimal solution convergence.  

The optimal balance achieved by particles enables effective control of their movement which 

prevents premature stagnation and leads to better chances of locating global optimal solutions. 

The individual variation of r1 and r2 values between particles creates increased solution 

diversity because it allows some particles to pursue exploration and others to focus on 

exploitation. The use of adaptive strategies to adjust values of r1 and r2 during runtime 

improves the exploration and exploitation relationship. The HPSO velocity update procedure 

applies random parameters together with global worst position features in order to properly 

guide particle movement without creating instability. The algorithm maintains a strong and 

effective performance for solving optimization problems like Learning Object sequencing in 

e-learning systems through proper adjustments of random factors. 

Results and Discussion 

We choose a problem as a real-world issue relating master's courses sequencing in the 

computer science department. The (artificial intelligence) MSc. Computer science program 

include 20 courses classified as: Essential courses (6) that must be taken initially. There might 

be confinements between two fundamental courses, for instance ‘swarm optimization’ course 

must go before deep learning course. Consistent courses (8) that must be taken in a settled 

arranged grouping. Principal courses (3). There might be confinements between two principal 

courses. Conditional courses (3). Extra imperatives as for some other course might be set. 

A practical sequence must have 20 LOs obtained all restrictions. The diagram demonstrates 

that all Objects and confinements are more complicated. Therefore, we perform the same 

quantity of practical solutions.  

When the problem was analyzed, the parameters of HPSO are set to test four various figures. 

These configures are: Configure1. The position of the particle is chosen as random based on 

Gbest and Gworst. After that, The Comparison of altering the values of particle Gworst and 

Gbest is set to (>=). Configure2. The permutation from Gbest/ Gworst. The comparison set 

to more (>). Configure3. All the permutations are obtained from the value of Gbest. The 

comparison set to (>=). Configure4. The permutations from Gbest. Comparison set to more 

(>). 

The highest solution known by all particles functions as "Gbest" to attract swarm members 

toward promising search space areas. The identification of "Gworst" tracks down the most 

problematic swarm solution to push particles away from unproductive yet conversely 

beneficial search areas as an overall exploration aid. The paper fails to provide adequate 

explanations about including these specific positions together with specific operators like ">". 

The performance of Configuration 4 reaches its pinnacle when applying velocity constraints 

because it relies exclusively on using Gbest and the ">" operator for comparisons. The used 

Gbest-centered strategy enables satisfactory exploration-exploitation equilibrium that leads to 
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efficient solution discovery without unnecessary influence from low-quality solutions. The 

lack of an explanation underlying the superior performance of this strategy prevents readers 

from determining if the achievement results from the algorithm itself or the particular 

characteristics of the problem. 

Little explanation exists regarding how the "velocity check" function avoids invalid particle 

movement and maximizes solution quality in all operational contexts. The mechanism 

functions to confine particles inside their feasible search areas and prevents destabilizing 

optimization by preventing erratic motions. The mentioned results verify that fitness values 

become better when the velocity check operations within different configurations. It remains 

crucial to understand both how this constraint controls particle movement behaviour along 

with its positive influence on reaching convergence consistency. The understanding of both 

HPSO behaviour and effective LO sequencing would improve through additional clarification 

of velocity check operation and its balancing capabilities. 

Figure 4 show that the results of each figure and results representing mean fitness value 

evaluation. 

 

Figure 5. PSO Figures performance comparison 

Table 1 the comparison of the results preformed in two cases that shows the required mean 

values for 200 runs. 

Table 1. compares fitness values of four configurations 

Configurations 
Fitness values with 

no velocity check 

Fitness values with 

velocity check 

1 1200 740 

2 1400 700 

3 1000 1250 

4 1500 580 

The table compares fitness values of four configurations under two conditions: with and 

without velocity check, a constraint ensuring valid particle movements in the Human 

Behavior-based Particle Swarm Optimization (HPSO) algorithm. Across all configurations, 

enabling velocity check improves solution quality by preventing invalid sequences. 
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Configuration 4, which focuses solely on the best global position (Gbest) using the > operator, 

achieves the best performance with the lowest fitness value (580) when velocity check is 

applied, highlighting its optimal balance of exploration and exploitation. In contrast, 

Configuration 3 performs poorly with velocity check (1250), suggesting over-constraining 

limits solution quality. Overall, applying velocity constraints and tailoring particle update 

strategies significantly enhance the algorithm’s efficiency in solving the Learning Object 

sequencing problem. 

 

Figure 6. Fitness values with no velocity vs Fitness values with velocity check 

The chart compares fitness values across four configurations for two scenarios: "with no 

velocity" and "with velocity." The "no velocity" configuration demonstrated superior 

performance than the "with velocity" condition in both Configuration 1 and Configuration 2. 

During Configuration 3 the "with velocity" scenario exceeds the "no velocity" scenario but 

drops abruptly in Configuration 4 as the "no velocity" scenario sharply rises. Velocity leads 

to dissimilar fitness outcomes for each configuration which may improve speed-related 

performance for select setups but impair performance for others. 

 

Figure 7. Comparison of fitness values with and without velocity check 
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Velocity check significantly improved solution quality in Configurations 1, 2, and 4. 

Configuration 4 shows the most optimized solution with a mean fitness value of 580, 

suggesting that a Gbest-centric approach with strict comparison yields optimal LO 

sequencing. However, Configuration 3 underperformed with velocity check, indicating that 

over-constraining particles may hinder search efficiency. 

 

Figure 8. Fitness value trends across configurations 

The "With Velocity" line dips drastically at Configuration 4, reflecting its superior 

performance. Configuration 3 bucks the trend, where the velocity check increases the fitness 

value, highlighting the need to tune constraint mechanisms carefully. 

 

Figure 9. Convergence curves of HPSO Configuration s 

The convergence curves trace the average fitness value across 50 iterations, for each 

configuration both with and without the velocity check constraint. Configurations 2 and 4 

with velocity check show a steeper and more stable convergence, reaching low fitness values 

early (indicating better LO sequence quality). Without velocity checks, all configurations 

converge slower and plateau at higher fitness levels, suggesting that particles may explore 

inefficient or invalid paths. Configuration 4 with velocity check consistently outperforms all 

others, indicating that relying solely on the best-known solution (Gbest) and using the strict 
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">" operator fosters an ideal balance between exploration and exploitation. The early 

convergence in velocity-enabled configurations implies faster decision-making and better 

computational efficiency for adaptive e-learning systems. 

 

Figure 10. Fitness value distributions across configurations 

Box plots summarize the range, variability, and outliers in fitness values from 200 

independent runs per configuration. With velocity check, most configurations demonstrate 

lower variance and tighter interquartile ranges, implying more consistent performance across 

runs. Configuration 4 with velocity exhibits both low average fitness and low variability, 

suggesting it is the most robust and dependable setup. Configuration 3 with velocity, in 

contrast, shows high variance and median values higher than expected. This may be due to 

over-reliance on a single optimization path (Gbest ≥), limiting exploration and causing 

stagnation. The presence of outliers in configurations without velocity check reflects erratic 

or invalid sequences, further emphasizing the importance of stability mechanisms. 

Table 2. Execution Time Comparison 

Configuration No Velocity Check (sec) With Velocity Check (sec) 

1 1.2 1.4 

2 1.5 1.6 

3 1.3 1.7 

4 1.6 1.8 

Execution times are slightly higher (by ~0.2–0.3 sec) when velocity check is enabled. This is 

expected due to the extra logic needed to verify valid particle movement. The performance 

trade-off is favorable: a minor increase in runtime leads to significant gains in accuracy, 

convergence, and feasibility. For real-world e-learning platforms that sequence large sets of 

courses or learning units, this efficiency is critical—especially when updates must be made 

in real-time based on learner feedback. 

Table 3. Feasibility Rate of Valid Sequences 

Configuration No Velocity Check (%) With Velocity Check (%) 

1 85 95 

2 82 97 

3 88 89 

4 80 99 
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The velocity check boosts feasibility rates across the board, affirming its role in preventing 

invalid transitions between learning objects. Configuration 4 with velocity reaches a 

remarkable 99% success rate, validating the configuration’s ability to consistently handle 

constraint satisfaction under complex course dependencies. Configuration 2 jumps from 82% 

to 97%, showing that even initially unstable configurations benefit greatly from proper 

particle boundary control.nThese results reinforce that **velocity constraints serve not just as 

optimization aids, but also as validity enforcement mechanisms—crucial in educational 

applications where invalid sequencing can mislead learners or hinder progression. 

Table 4. Constraint Types and Frequencies 

Constraint Type Number of Occurrences 

Essential → Others 6 

Consistent Sequence 8 

Principal Course Dependency 3 

Conditional Course Rules 5 

Consistent sequences (8 occurrences) form the bulk of restrictions, which reflects the real-

world need for maintaining strict pedagogical progression in many academic curricula. The 

“Essential → Others” constraint type aligns with prerequisites commonly found in 

foundational subjects like programming, math, or algorithms. Conditional and principal 

dependencies are fewer in number but complex in nature, often depending on user profile, 

previous performance, or course context—making them harder to model without intelligent 

algorithms like HPSO. Understanding the frequency and complexity of these constraints 

underscores why a simple linear sequencing or rule-based method would fail. The CSP nature 

of this problem demands an adaptive, constraint-aware approach such as HPSO. 

Both this study and earlier ones show that using HPSO in the ordering of Learning Objects 

holds great potential, mainly with measures to prevent particles from moving outside the 

possible area, for example through the velocity check. The study found that, in carefully 

focused circumstances, basing sequence decisions on behavioral logic improves the 

uniformity and quality of teaching approaches in challenging educational scenarios. A very 

clear effect was seen on algorithmic results after introducing the velocity check. Every time 

this constraint was used, the configurations performed better, so the choices led to sequences 

that respected the sequence of learning topics. They found that the configuration not only 

achieved better solutions rapidly, but its behavior was steadier and more reliable as the process 

went on. In all the configurations, relying solely on global best particle paths with strict 

comparison is what we found to work well. The results were especially strong when decisions 

were based on previous successes and when other, incorrect choices were prevented. 

The same pattern of consistency shone through strong in the way the results were divided up. 

The results show that systems with velocity checks have compact ranges and fewer results at 

the extremes compared to those without velocity checks. In other words, directors were able 

to create good sequences consistently, not only very occasionally. Configuration 4 continued 

to be the top performer among them, by having low average fitness as well as very little 

variation. This regularity makes the material very important for education. It is important for 

learning systems to meet each person’s needs while still maintaining the important elements 

of how topics should be taught. It is good to be aware of how much attention is given to 

performance and efficiency. Although execution time got a little slower with velocity 

enforcement, I think the result is justified. Small delays in each cycle are well worth the 

exceptional boost in both quality and feasibility of the outcome. This matters a lot in real 

systems since learners’ sequences need to be tailored as they move forward. 

The importance of velocity control was best shown by changes in feasibility rates. Because 

of this, the algorithm regularly produced sequences with courses listed out of order or skipped 
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key basic courses. Once velocity was used, the rate of correct sequence generation increased 

substantially in every setup, hitting 99% for Configuration 4. Reliability of this level is 

required for all adaptive learning platforms. If learning paths are created too quickly, it can 

seriously harm a learner’s experience and knowledge. Looking at how course constraints are 

set up helped greatly to interpret the evaluations. When we realized that the project had eight 

sequential dependencies, several important and flexible rules and multiple closely connected 

courses, it was obvious that sorting these wasn’t going to be simple. Instead, it captures how 

actual curricula are made from courses that are connected and join together. It proves that 

using smart, behavior-based strategies is better than simply following strict rules or brute 

scheduling. 

Conclusion  

This research was intended to investigate how well an HPSO algorithm works for sequencing 

Learning Objects within strict constraints at a university. The experiments demonstrate that 

using behavior-guided optimization, combined with steps to control invalid options, leads to 

better results in designing paths for adaptive learning. No matter the different settings tested, 

HPSO showed strength in creating coherent sequences that followed how topics should be 

covered. Using velocity control made the produced sequences both better and more 

dependable. Of the four configurations, four emphasizing strict global recommendations, 

Configuration 4 proved to be the most reliable and efficient—it reached the least fitness 

values, the greatest count of valid sequences and always showed clear signs of convergence. 

Although these results look positive, they also highlight several broader points. Because 

learning is becoming more personalized, we need tools that can adapt to students while still 

keeping the curriculum’s sense. The study demonstrates that running swarm intelligence 

algorithms based on constraints and observable goals can meet these requirements effectively. 

Moving forward, the approach could be updated to provide live feedback, regularly adapt to 

students and connect several fields of study into its network. HPSO is looking promising so 

far, useful both as a technology and as a teaching method for planning meaningful and 

effective lessons. 
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