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Avrticle Info Abstract
Article history: Flood prediction is critical for reducing the negative effects of
Received 1 August 2024 catastrophes. This study investigates the use of classical and deep
Received in revised form 30 learning algorithms to accurately anticipate flood levels using past
August 2024 ecological information. The study takes two approaches: linear
Accepted 28 December 2024 regression and deep neural networks (DNN). These models are trained
and evaluated using historical records stretching years, as well as
Keywords: moisture, temperature, and rainfall measurements. Visualization tools,
Floods such as development/validation reduction charts projected against real
Mean Squared Error (MSE) floodwater level graphs, can help understand model learning behaviors
Root Mean Squared Error and efficacy. Furthermore, a combination model method is investigated,
(RMSE) which combines forecasts from both approaches and has the promise to
and R-squared (R?) hybrid improve the accuracy of predictions. Future forecasts for the year 2025
Machine Learning (ML) can be generated using expected atmospheric conditions, illustrating the
DNNs models' usefulness in projecting eventual floodwater levels. Measures of

assessment and visualization results demonstrate the effectiveness of
deep learning technologies in improving flooding predictions when
contrasted with classic conventional techniques. This investigation
advances flooding forecasting skills by combining known statistical
approaches and new deep learning algorithms, thereby helping in active
catastrophe control and vulnerability planning.

Introduction

Floods pose enormous hazards to ecosystems and towns worldwide, emphasizing the crucial
importance of timely and precise forecasting systems. Traditionally, flood forecasting has
depended on statistical models like Linear Regression, which uses past information on storms,
the flow of rivers, and surrounding factors to determine prospective flood waters (Duan et al.,
2006; Madsen et al.,, 2014). These approaches bring beneficial insights into flood
circumstances, but they may fail to identify nonlinear correlations and complicated linkages
in the data. As DNINs grow more popular in applications that are mission-critical, maintaining
their consistent operation becomes vital. Also, it can solve the complex problem. Traditional
resilience solutions fail to compensate for the particular characteristics of DNN
algorithms/accelerators, rendering them infeasible or ineffectual (Mittal, 2020; Parashar et al.,
2019). DNNs have recently transformed forecasting by allowing complex designs to be
retrieved from huge amounts of data (Chollet, 2017). DNNSs excel at learning tiered structures
for information, making them ideal for applications requiring nonlinear correlations and

890
ISSN: 2716-3865 (Print), 2721-1290 (Online)
Copyright © 2024, Journal La Multiapp, Under the license CC BY-SA 4.0


mailto:muthanasalih@uomustansiriyah.edu.iq

component interactions, such as flood predictions (Mosavi et al., 2018; Sit et al., 2020;
Dtissibe et al., 2024).

This study investigates and compares the efficacy of classic methods of statistics and current
deep-learning techniques in predicting floods. The present investigation aims to assess the
forecasting capacity of these algorithms through various situations and circumstances by
using complete datasets that include previous records of the process of precipitation
temperature, humidity, and river flow dynamics, as well as advances in mathematical methods
(Yosri et al., 2024; Herath et al., 2023; Li & Jun, 2024; Karim et al., 2023).

The primary goals involve the following: a) Assessment of analytical techniques: Evaluating
the accuracy and efficacy of Linear Regression models for catching historical flood dynamics
and forecasting future flood levels; b) Application of Deep Learning: Implementing DNN
architectures, such as Convolutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNSs), can capitalize on timing and geographical connections in data on the
environment for improved forecasting precision; c) Hybrid Modeling Approaches:
Investigating hybrid models that combine the strengths of statistical and deep learning
methods to capitalize on both historical patterns and complicated data interactions; d) The
present research aims to improve flood projection features and notify resilient approaches to
disaster mitigation by using accurate assessments such as Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), and R-squared (R?), as well as graphics of predicted instead of
reality levels of a flood.

After this introduction, the rest of the research includes related works in the second section,
the research methodology in the third section, the results in the fourth section, and we end
with the conclusions in the fifth section.

Related works
There are many related works: -

In Habibi et al. (2023) This paper presents hybrid Machine Learning (ML) models that
combine ensemble techniques with Feature Selection (FS) algorithms for Flood Hazard (FH)
prediction, which is critical for managing destructive natural disasters such as floods. The
ideal Flood Influential Factors (FIFs) are identified using the Simulated Annealing (SA) and
Information Gain (IG) FS algorithms. Random search (RS) and repeated cross-validation are
used to improve group machine learning (ML) models such as AdaboostM1 (ABM), Boosted
Generalized Linear Model (BGLM), and Stochastic Gradient Boosting. Rainfall, distance to
river, height, and limestone are identified as key FIFs in the Sardabroud watershed, Iran. The
SA-ABM model has the greatest AUC value (0.983) in ROC analysis, indicating 27% of the
area with high flood hazard.

In Habibi et al. (2023). This study presents unique hybrid Machine Learning (ML) models for
enhancing flash flood susceptibility (FFS) mapping in the Neka-Haraz watershed in Iran. It
combines ensemble ML models (BAFDA, XGB, ROF, and BGAM) with wrapper-based
factor optimization methods (RFE, Boruta) to meta-optimize super-parameters using Random
Search (RS). According to ROC AUC and efficiency measures, BGAM-Boruta performs best
(AUC =0.953, Efficiency = 0.910). FFS is influenced by several elements, including distance
to river, slope, rainfall, altitude, and distance to road. The models demonstrate substantial
potential (up to 46% coverage) for detecting high-risk FFS areas, which can aid in effective
disaster management methods.

In Anaraki et al. (2023). The present investigation uses advanced combination models
(GLMBoost, RF, and BayesGLM) to improve flash-flood risk estimation in Iran, addressing
the critical requirement for accurate modeling in the face of frequent natural disasters. The
models obtain great performance by using simulated annealing for feature selection (accuracy
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= 90-92%, Kappa = 79-84%, Success ratio = 94-96%, Threat score = 80-84%, and Heidke
skill score = 79-84%). Distance from downloads, vegetation, the amount of drainage, use of
land, and slope all have a substantial impact on the models, allowing for more effective hazard
mapping and flood mitigation measures in data-scarce places.

In Hosseini et al. (2020). This paper presents a novel methodology for analyzing flood
frequency under climate change scenarios (HadCM3, CGCM3, CanESM 2). Precipitation is
classified using Multivariate Adaptive Regression Splines (MARS) and an M5 Model Tree,
while the Whale Optimization Approach (WOA) trains a Least Square Support Vector
Machine to model it. The Wavelet Transform (WT) separates the temperatures and
precipitation, and different algorithms (LSSVM-WOA, LSSVM, KNN, ANN) reduce
temperature as well as precipitation. The discharge simulation covers the present, near future,
and far future eras, with flood frequency calculations finding a lower 200-year discharge
across all scenarios. Uncertainty study using ANOVA and fuzzy approaches highlights
hydrological model uncertainties, with HadCM3 demonstrating decreased uncertainty during
high return periods.

Methods

The Linear Regression algorithm uses scikit-learn's linear regression to generate a baseline
forecast based on fundamental conditions. At that point, the Deep Neural Network approach,
built with Keras and TensorFlow, uses many complex layers with reduced linear unit (ReLU)
events and dropout for legalization. Models are trained on a subset of data and verified on rest
to determine predicted performance using MSE and R-squared (R?). Figure 1 illustrates the
d]general data flow diagram of proposed system.

[Data Collection and Preprocessing]

[Traditional Statistical Modeling]

b

[Deep Learning for Modeling)

b

[Model Training and Evaluation]

[Hybrid Model Integration]

{Perforrnance Evaluation and Comparison)

A

[Future Prediction and Validation]

A

[Interpretation and Conclusion]

Figure 1. Data flow diagram of proposed system
The general steps are:-
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Stage 1. Data Collection and Preprocessing

The study begins with the collection of extensive datasets that include historical records of
environmental factors important for flood prediction. These variables usually include: a)
Weather information includes annual rainfall, relative humidity, temperature, and velocity of
wind records; b) Hydrological statistics include discharge from rivers, the amount of water,
& the rate of flow; c) Data preparation includes cleaning up information eliminating outliers,
addressing lost numbers, and assuring data uniformity; d) Feature selection is the process of
identifying key characteristics that have a substantial impact on flood dynamics; d)
Normalization involves scaling computational characteristics to guarantee homogeneity and
improve model performance.

Stage 2. Traditional Statistical Modeling

Linear Regression: Uses scikit-learn's LinearRegression to estimate the link amongst prior
atmospheric variables (such as rainfall and temp) and the extent of flooding. Uses
characteristics engineering to choose appropriate markers and build a model of linearity based
on past patterns.

Stage 3. Deep Learning for Modeling

Establishes a model that is sequential employing Keras and TensorFlow as the backend.
Creates multi-layered patterns with dense layers, using functions of nonlinear activation like
ReLU to capture intricate connections. Uses regularization for dropouts to avoid overfitting
and improve applicability.

Stage 4. Model Training and Evaluation

The dataset is divided into subsets to be trained and tested using cross-validations techniques.
The efficiency of the model is evaluated using measures like MSE, RMSE, and R-squared
(R?). Shows anticipated and real flood tides to evaluate model reliability and preciseness.
Separates the dataset across testing, validation, and training sets for the DNN model.
Monitoring training progress using validation loss to avoid overfitting and optimize
hyperparameters.

Stage 5. Hybrid model integration

Investigates hybrid modeling techniques that combine forecasts from Linear Regression and
DNN models. Outputs are averaged or combined to make use of each model type's advantages
and improve overall prediction precision.

Stage 6. Performance evaluation and comparison

Each model's efficacy is evaluated through quantitatively specified metrics. Conducts
statistical investigations to evaluate the predicting skills of traditional statistical approaches
versus advanced machine learning techniques. Creates detailed visualizations, such as loss
curves, scatter graphs of anticipated versus actual results, and comparison analyses, to
successfully assess and explain discoveries.

Stage 7. Future Prediction and Validation

Flood forecasts are simulated for possible futures (e.g., 2025) using expected weather
conditions. Model stability and reliability are validated via sensitivity analysis and scenario
testing. Continually improves models depending on feedback along with performance data.

Stage 8. Interpretation and conclusion

Outlines the major results of the study, insights, and consequences. The suggestions for flood
models for prediction are discussed, including their merits, boundaries, and possible
applications.
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Makes suggestions for improving flood predictions by combining statistical and machine
learning technologies.

Results and Discussion

In the context of machine learning, an "epoch™ is defined as one full trip over the whole set
of data utilized in training. Throughout each epoch, the algorithm is developed on chunks of
data, and its success indicators, such as the loss function, are assessed.

Each epoch is a cycle in which the model learns from the data and modifies its weights in
order to reduce the coefficient of loss. The objective was to train the algorithms until the error
function merges to the least, demonstrating that it is capable of recognizing the basic patterns
in the data. The assessment of loss is important because it monitors the model's function on
unknown information, thereby minimizing overfitting.

As example:-

Epoch 1/150: The model started with a training loss of 2529111.0000 and a validation loss of
1374155.3750 after processing 4 batches.

Epoch 2/150: The model's training loss increased to 2613328.0000, but the validation loss
decreased to 1253333.2500.

Epoch 3/150: The training loss decreased to 2401501.2500, and the validation loss continued
to decrease to 1145032.3750.

Epoch 4/150: Both training and validation losses decreased further.
Linear Regression - MSE: 342678.6358668617, R"2: -8.220144690470374
DNN - MSE: 80775.56675841555, R"2: -1.1733552518771475
Hybrid Model - MSE: 158831.95172309814, R"2: -3.273547934064216
Tabel I illustrates the Strategy of Epoch that can be used

Table 1. Description of Strategy of Epoch

Strategy Description Benefits
A complete pass over the dataset
. o ) Improves model accuracy by
Concept of during each training iteration, . :
- - iterating over the data and
Epoch updating model weights based on

calculated loss. updating weights continuously.

Stops training when performance on | Prevents overfitting, improves
Early Stopping | the validation set no longer improves | prediction accuracy, and saves

after a certain number of epochs. time and resources.
P Tracks metrics such as loss and Helps enhance performance and
erformance . ' S
L accuracy to adjust the number of avoid underfitting or
Monitoring L
epochs based on performance. overfitting.
Cross- Evaluates the model across different | Enhances generalization and
validation data subsets to determine the optimal | reduces errors due to

number of epochs. overfitting.

894
ISSN: 2716-3865 (Print), 2721-1290 (Online)
Copyright © 2024, Journal La Multiapp, Under the license CC BY-SA 4.0



Figure 2 illustrates the prediction result

=== Predictions for 2025 ===

Expected floods in 2825 (Linear Regression): 1383.5520968114433 cubic meters
Expected floods in 2825 (DNN): 1427.3739013671875 cubic meters

Expected floods in 2825 (Hybrid Model): 1365.4629990893154 cubic meters

Figure 2. prediction results

As shown in Figure 2. The training and validation loss plots demonstrate a steady reduction
in loss, indicating effective model formation and stable converging. The scatter figure
contrasts projected and actual flood levels, with the majority of predictions being close to
those of actual numbers but with a few differences. Overall, the model functions well, but
precision should be improved.
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Figure 3. visualization results for training and an actual model.
Tabel 2 and table 3 illustrate the description of the figure 3
Table 2. Deep Neural Network Training and Validation Loss

Epochs Training Loss (Mean Squared Validation Loss (Mean Squared
Error) Error)
0 High High
~10 Significant decrease Decrease
~50 Plateau Slight decrease
~100 | Small fluctuations around a low value Stabilization
~140 Stabilized at low value Stabilized at low value
Table 3. Predicted vs Actual Flood Levels
Actual Flood Predicted Flood Deviation from Actual (Predicted -
Levels Levels Actual)
1100 ~1400 Positive
1200 ~1450 Positive
1300 ~1350 Slightly Positive
1400 ~1450 Positive
1500 ~1500 0
1600 ~1500 Negative
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Conclusion

The study intended to forecast flood waters using an advanced neural network. Validation and
training loss lines demonstrate that the system efficiently learned themes given the data since
both losses dropped and steadied over epochs. Nevertheless, a scatter map comparing
projected and actual flood levels shows differences, demonstrating that even when the model
catches trends, its accuracy fluctuates for specific data points. This shows that the
mathematical framework is a strong starting point, but it could benefit from more tuning,
feature engineering, or importing more diverse data to improve prediction precision as well
as reliability.
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