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 Abstract  

Flood prediction is critical for reducing the negative effects of 

catastrophes. This study investigates the use of classical and deep 

learning algorithms to accurately anticipate flood levels using past 

ecological information. The study takes two approaches: linear 

regression and deep neural networks (DNN). These models are trained 

and evaluated using historical records stretching years, as well as 

moisture, temperature, and rainfall measurements. Visualization tools, 

such as development/validation reduction charts projected against real 

floodwater level graphs, can help understand model learning behaviors 

and efficacy. Furthermore, a combination model method is investigated, 

which combines forecasts from both approaches and has the promise to 

improve the accuracy of predictions. Future forecasts for the year 2025 

can be generated using expected atmospheric conditions, illustrating the 

models' usefulness in projecting eventual floodwater levels. Measures of 

assessment and visualization results demonstrate the effectiveness of 

deep learning technologies in improving flooding predictions when 

contrasted with classic conventional techniques. This investigation 

advances flooding forecasting skills by combining known statistical 

approaches and new deep learning algorithms, thereby helping in active 

catastrophe control and vulnerability planning. 

Introduction 

Floods pose enormous hazards to ecosystems and towns worldwide, emphasizing the crucial 

importance of timely and precise forecasting systems. Traditionally, flood forecasting has 

depended on statistical models like Linear Regression, which uses past information on storms, 

the flow of rivers, and surrounding factors to determine prospective flood waters (Duan et al., 

2006; Madsen et al., 2014). These approaches bring beneficial insights into flood 

circumstances, but they may fail to identify nonlinear correlations and complicated linkages 

in the data. As DNNs grow more popular in applications that are mission-critical, maintaining 

their consistent operation becomes vital. Also, it can solve the complex problem. Traditional 

resilience solutions fail to compensate for the particular characteristics of DNN 

algorithms/accelerators, rendering them infeasible or ineffectual (Mittal, 2020; Parashar et al., 

2019). DNNs have recently transformed forecasting by allowing complex designs to be 

retrieved from huge amounts of data (Chollet, 2017). DNNs excel at learning tiered structures 

for information, making them ideal for applications requiring nonlinear correlations and 
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component interactions, such as flood predictions (Mosavi et al., 2018; Sit et al., 2020; 

Dtissibe et al., 2024). 

This study investigates and compares the efficacy of classic methods of statistics and current 

deep-learning techniques in predicting floods. The present investigation aims to assess the 

forecasting capacity of these algorithms through various situations and circumstances by 

using complete datasets that include previous records of the process of precipitation 

temperature, humidity, and river flow dynamics, as well as advances in mathematical methods 

(Yosri et al., 2024; Herath et al., 2023; Li & Jun, 2024; Karim et al., 2023). 

The primary goals involve the following: a) Assessment of analytical techniques: Evaluating 

the accuracy and efficacy of Linear Regression models for catching historical flood dynamics 

and forecasting future flood levels; b) Application of Deep Learning: Implementing DNN 

architectures, such as Convolutional Neural Networks (CNNs) and Recurrent Neural 

Networks (RNNs), can capitalize on timing and geographical connections in data on the 

environment for improved forecasting precision; c) Hybrid Modeling Approaches: 

Investigating hybrid models that combine the strengths of statistical and deep learning 

methods to capitalize on both historical patterns and complicated data interactions; d) The 

present research aims to improve flood projection features and notify resilient approaches to 

disaster mitigation by using accurate assessments such as Mean Squared Error (MSE), Root 

Mean Squared Error (RMSE), and R-squared (R²), as well as graphics of predicted instead of 

reality levels of a flood. 

After this introduction, the rest of the research includes related works in the second section, 

the research methodology in the third section, the results in the fourth section, and we end 

with the conclusions in the fifth section. 

Related works 

There are many related works: - 

In Habibi et al. (2023) This paper presents hybrid Machine Learning (ML) models that 

combine ensemble techniques with Feature Selection (FS) algorithms for Flood Hazard (FH) 

prediction, which is critical for managing destructive natural disasters such as floods. The 

ideal Flood Influential Factors (FIFs) are identified using the Simulated Annealing (SA) and 

Information Gain (IG) FS algorithms. Random search (RS) and repeated cross-validation are 

used to improve group machine learning (ML) models such as AdaboostM1 (ABM), Boosted 

Generalized Linear Model (BGLM), and Stochastic Gradient Boosting. Rainfall, distance to 

river, height, and limestone are identified as key FIFs in the Sardabroud watershed, Iran. The 

SA-ABM model has the greatest AUC value (0.983) in ROC analysis, indicating 27% of the 

area with high flood hazard. 

In Habibi et al. (2023). This study presents unique hybrid Machine Learning (ML) models for 

enhancing flash flood susceptibility (FFS) mapping in the Neka-Haraz watershed in Iran. It 

combines ensemble ML models (BAFDA, XGB, ROF, and BGAM) with wrapper-based 

factor optimization methods (RFE, Boruta) to meta-optimize super-parameters using Random 

Search (RS). According to ROC AUC and efficiency measures, BGAM-Boruta performs best 

(AUC = 0.953, Efficiency = 0.910). FFS is influenced by several elements, including distance 

to river, slope, rainfall, altitude, and distance to road. The models demonstrate substantial 

potential (up to 46% coverage) for detecting high-risk FFS areas, which can aid in effective 

disaster management methods. 

In Anaraki et al. (2023). The present investigation uses advanced combination models 

(GLMBoost, RF, and BayesGLM) to improve flash-flood risk estimation in Iran, addressing 

the critical requirement for accurate modeling in the face of frequent natural disasters. The 

models obtain great performance by using simulated annealing for feature selection (accuracy 
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= 90-92%, Kappa = 79-84%, Success ratio = 94-96%, Threat score = 80-84%, and Heidke 

skill score = 79-84%). Distance from downloads, vegetation, the amount of drainage, use of 

land, and slope all have a substantial impact on the models, allowing for more effective hazard 

mapping and flood mitigation measures in data-scarce places. 

In Hosseini et al. (2020). This paper presents a novel methodology for analyzing flood 

frequency under climate change scenarios (HadCM3, CGCM3, CanESM 2). Precipitation is 

classified using Multivariate Adaptive Regression Splines (MARS) and an M5 Model Tree, 

while the Whale Optimization Approach (WOA) trains a Least Square Support Vector 

Machine to model it. The Wavelet Transform (WT) separates the temperatures and 

precipitation, and different algorithms (LSSVM-WOA, LSSVM, KNN, ANN) reduce 

temperature as well as precipitation. The discharge simulation covers the present, near future, 

and far future eras, with flood frequency calculations finding a lower 200-year discharge 

across all scenarios. Uncertainty study using ANOVA and fuzzy approaches highlights 

hydrological model uncertainties, with HadCM3 demonstrating decreased uncertainty during 

high return periods. 

Methods  

The Linear Regression algorithm uses scikit-learn's linear regression to generate a baseline 

forecast based on fundamental conditions. At that point, the Deep Neural Network approach, 

built with Keras and TensorFlow, uses many complex layers with reduced linear unit (ReLU) 

events and dropout for legalization. Models are trained on a subset of data and verified on rest 

to determine predicted performance using MSE and R-squared (R²).   Figure 1 illustrates the 

d]general data flow diagram of proposed system. 

 

Figure 1.  Data flow diagram of proposed system 

The general steps are:- 
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Stage 1. Data Collection and Preprocessing 

The study begins with the collection of extensive datasets that include historical records of 

environmental factors important for flood prediction. These variables usually include: a) 

Weather information includes annual rainfall, relative humidity, temperature, and velocity of 

wind records; b) Hydrological statistics include discharge from rivers, the amount of water, 

& the rate of flow; c) Data preparation includes cleaning up information eliminating outliers, 

addressing lost numbers, and assuring data uniformity; d) Feature selection is the process of 

identifying key characteristics that have a substantial impact on flood dynamics; d)  

Normalization involves scaling computational characteristics to guarantee homogeneity and 

improve model performance. 

Stage 2. Traditional Statistical Modeling 

Linear Regression: Uses scikit-learn's LinearRegression to estimate the link amongst prior 

atmospheric variables (such as rainfall and temp) and the extent of flooding. Uses 

characteristics engineering to choose appropriate markers and build a model of linearity based 

on past patterns. 

Stage 3. Deep Learning for Modeling 

Establishes a model that is sequential employing Keras and TensorFlow as the backend. 

Creates multi-layered patterns with dense layers, using functions of nonlinear activation like 

ReLU to capture intricate connections. Uses regularization for dropouts to avoid overfitting 

and improve applicability. 

Stage 4. Model Training and Evaluation 

The dataset is divided into subsets to be trained and tested using cross-validations techniques. 

The efficiency of the model is evaluated using measures like MSE, RMSE, and R-squared 

(R²). Shows anticipated and real flood tides to evaluate model reliability and preciseness. 

Separates the dataset across testing, validation, and training sets for the DNN model. 

Monitoring training progress using validation loss to avoid overfitting and optimize 

hyperparameters. 

Stage 5. Hybrid model integration 

Investigates hybrid modeling techniques that combine forecasts from Linear Regression and 

DNN models. Outputs are averaged or combined to make use of each model type's advantages 

and improve overall prediction precision. 

Stage 6. Performance evaluation and comparison 

Each model's efficacy is evaluated through quantitatively specified metrics. Conducts 

statistical investigations to evaluate the predicting skills of traditional statistical approaches 

versus advanced machine learning techniques. Creates detailed visualizations, such as loss 

curves, scatter graphs of anticipated versus actual results, and comparison analyses, to 

successfully assess and explain discoveries. 

Stage 7. Future Prediction and Validation 

Flood forecasts are simulated for possible futures (e.g., 2025) using expected weather 

conditions. Model stability and reliability are validated via sensitivity analysis and scenario 

testing. Continually improves models depending on feedback along with performance data. 

Stage 8. Interpretation and conclusion 

Outlines the major results of the study, insights, and consequences. The suggestions for flood 

models for prediction are discussed, including their merits, boundaries, and possible 

applications. 
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Makes suggestions for improving flood predictions by combining statistical and machine 

learning technologies. 

Results and Discussion 

In the context of machine learning, an "epoch" is defined as one full trip over the whole set 

of data utilized in training. Throughout each epoch, the algorithm is developed on chunks of 

data, and its success indicators, such as the loss function, are assessed.  

Each epoch is a cycle in which the model learns from the data and modifies its weights in 

order to reduce the coefficient of loss. The objective was to train the algorithms until the error 

function merges to the least, demonstrating that it is capable of recognizing the basic patterns 

in the data. The assessment of loss is important because it monitors the model's function on 

unknown information, thereby minimizing overfitting. 

As example:- 

Epoch 1/150: The model started with a training loss of 2529111.0000 and a validation loss of 

1374155.3750 after processing 4 batches. 

Epoch 2/150: The model's training loss increased to 2613328.0000, but the validation loss 

decreased to 1253333.2500. 

Epoch 3/150: The training loss decreased to 2401501.2500, and the validation loss continued 

to decrease to 1145032.3750. 

Epoch 4/150: Both training and validation losses decreased further.  

Linear Regression - MSE: 342678.6358668617, R^2: -8.220144690470374 

DNN - MSE: 80775.56675841555, R^2: -1.1733552518771475 

Hybrid Model - MSE: 158831.95172309814, R^2: -3.273547934064216 

Tabel  I illustrates the Strategy of Epoch that can be used 

Table 1. Description of Strategy of Epoch 

Strategy Description Benefits 

Concept of 

Epoch 

A complete pass over the dataset 

during each training iteration, 

updating model weights based on 

calculated loss. 

Improves model accuracy by 

iterating over the data and 

updating weights continuously. 

Early Stopping 

Stops training when performance on 

the validation set no longer improves 

after a certain number of epochs. 

Prevents overfitting, improves 

prediction accuracy, and saves 

time and resources. 

Performance 

Monitoring 

Tracks metrics such as loss and 

accuracy to adjust the number of 

epochs based on performance. 

Helps enhance performance and 

avoid underfitting or 

overfitting. 

Cross-

Validation 

Evaluates the model across different 

data subsets to determine the optimal 

number of epochs. 

Enhances generalization and 

reduces errors due to 

overfitting. 
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Figure 2 illustrates the prediction result 

 

Figure 2. prediction results 

As shown in Figure 2. The training and validation loss plots demonstrate a steady reduction 

in loss, indicating effective model formation and stable converging. The scatter figure 

contrasts projected and actual flood levels, with the majority of predictions being close to 

those of actual numbers but with a few differences. Overall, the model functions well, but 

precision should be improved. 

 

Figure 3. visualization results for training and an actual model. 

Tabel 2 and table 3 illustrate the description of the figure 3 

Table 2. Deep Neural Network Training and Validation Loss 

Epochs 
Training Loss (Mean Squared 

Error) 

Validation Loss (Mean Squared 

Error) 

0 High High 

~10 Significant decrease Decrease 

~50 Plateau Slight decrease 

~100 Small fluctuations around a low value Stabilization 

~140 Stabilized at low value Stabilized at low value 

Table 3. Predicted vs Actual Flood Levels 

Actual Flood 

Levels 

Predicted Flood 

Levels 

Deviation from Actual (Predicted - 

Actual) 

1100 ~1400 Positive 

1200 ~1450 Positive 

1300 ~1350 Slightly Positive 

1400 ~1450 Positive 

1500 ~1500 0 

1600 ~1500 Negative 
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Conclusion  

The study intended to forecast flood waters using an advanced neural network. Validation and 

training loss lines demonstrate that the system efficiently learned themes given the data since 

both losses dropped and steadied over epochs. Nevertheless, a scatter map comparing 

projected and actual flood levels shows differences, demonstrating that even when the model 

catches trends, its accuracy fluctuates for specific data points. This shows that the 

mathematical framework is a strong starting point, but it could benefit from more tuning, 

feature engineering, or importing more diverse data to improve prediction precision as well 

as reliability. 
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