Exercise Promotes Mirnas’ Change in Cardiac Fibrosis
Abstract
Cardiac fibrosis is a pathological feature as a key factor in cardiac remodelling, thus progressing to heart failure. MicroRNAs (miRNAs) are crucial intracellular mediators of various biological processes, involved in the regulation of physiological and pathological processes. Recently, it has been shown that miRNAs were found to play a role in exercise-induced cardioprotection. Studies in human and animal subject with variety of acute and chronic exercise were observed. This review highlights impacts of exercise on the miRNA levels associated with cardiac fibrosis.
References
Adam, O., Löhfelm, B., Thum, T., Gupta, S. K., Puhl, S.-L., Schäfers, H.-J., Böhm, M., & Laufs, U. (2012). Role of miR-21 in the pathogenesis of atrial fibrosis. Basic Research in Cardiology, 107, 1–12. https://doi.org/10.1007/s00395-012-0278-0
Baggish, A. L., Park, J., Min, P.-K., Isaacs, S., Parker, B. A., Thompson, P. D., Troyanos, C., D’Hemecourt, P., Dyer, S., & Thiel, M. (2014). Rapid upregulation and clearance of distinct circulating microRNAs after prolonged aerobic exercise. Journal of Applied Physiology, 116(5), 522–531. https://doi.org/10.1152/japplphysiol.01141.2013
Barber, J. L., Zellars, K. N., Barringhaus, K. G., Bouchard, C., Spinale, F. G., & Sarzynski, M. A. (2019). The effects of regular exercise on circulating cardiovascular-related microRNAs. Scientific Reports, 9(1), 7527. https://doi.org/10.1038/s41598-019-43978-x
Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136(2), 215–233. https://doi.org/10.1016/j.cell.2009.01.002
Borges, D., Ormond, S., Nogueira, M., Silva, K., & Almeida, J. (2019). Exercise Training and Cardiac Remodeling. Sports, Health and Exercise Medicine, 71.
Chaturvedi, P., Kalani, A., Medina, I., Familtseva, A., & Tyagi, S. C. (2015). Cardiosome mediated regulation of MMP 9 in diabetic heart: Role of mir29b and mir455 in exercise. Journal of Cellular and Molecular Medicine, 19(9), 2153–2161. https://doi.org/10.1111/jcmm.12589
Chen, S., Puthanveetil, P., Feng, B., Matkovich, S. J., Dorn, G. W., & Chakrabarti, S. (2014). Cardiac miR‐133a overexpression prevents early cardiac fibrosis in diabetes. Journal of Cellular and Molecular Medicine, 18(3), 415–421. https://doi.org/10.1111/jcmm.12218
Chin, E. C., Yu, A. P., Lai, C. W., Fong, D. Y., Chan, D. K., Wong, S. H., Sun, F., Ngai, H. H., Yung, P. S. H., & Siu, P. M. (2020). Low-frequency HIIT improves body composition and aerobic capacity in overweight men. Medicine & Science in Sports & Exercise, 52(1), 56–66. https://doi.org/10.1249/mss.0000000000002097
Condrat, C. E., Thompson, D. C., Barbu, M. G., Bugnar, O. L., Boboc, A., Cretoiu, D., Suciu, N., Cretoiu, S. M., & Voinea, S. C. (2020). miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells, 9(2), 276. https://doi.org/10.3390/cells9020276
Creemers, E. E., & Van Rooij, E. (2016). Function and therapeutic potential of noncoding RNAs in cardiac fibrosis. Circulation Research, 118(1), 108–118. https://doi.org/10.1161/CIRCRESAHA.115.305242
da Costa Martins, P. A., Salic, K., Gladka, M. M., Armand, A.-S., Leptidis, S., El Azzouzi, H., Hansen, A., Coenen-de Roo, C. J., Bierhuizen, M. F., & Van Der Nagel, R. (2010). MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nature Cell Biology, 12(12), 1220–1227. https://doi.org/10.1038/ncb2126
de Gonzalo-Calvo, D., Dávalos, A., Fernández-Sanjurjo, M., Amado-Rodríguez, L., Díaz-Coto, S., Tomás-Zapico, C., Montero, A., García-González, Á., Llorente-Cortés, V., & Heras, M. E. (2018). Circulating microRNAs as emerging cardiac biomarkers responsive to acute exercise. International Journal of Cardiology, 264, 130–136. https://doi.org/10.1016/j.ijcard.2018.02.092
Dogar, A. M., Towbin, H., & Hall, J. (2011). Suppression of latent transforming growth factor (TGF)-β1 restores growth inhibitory TGF-β signaling through microRNAs. Journal of Biological Chemistry, 286(18), 16447–16458. https://doi.org/10.1074/jbc.M110.208652
Duisters, R. F., Tijsen, A. J., Schroen, B., Leenders, J. J., Lentink, V., van der Made, I., Herias, V., van Leeuwen, R. E., Schellings, M. W., & Barenbrug, P. (2009). miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circulation Research, 104(2), 170–178. https://doi.org/10.1161/CIRCRESAHA.108.182535
Fernández‐Sanjurjo, M., Úbeda, N., Fernández‐García, B., Del Valle, M., Ramírez de Molina, A., Crespo, M. C., Martín‐Hernández, R., Casas‐Agustench, P., Martínez‐Camblor, P., & de Gonzalo‐Calvo, D. (2020). Exercise dose affects the circulating microRNA profile in response to acute endurance exercise in male amateur runners. Scandinavian Journal of Medicine & Science in Sports, 30(10), 1896–1907. https://doi.org/10.1111/sms.13759
Hu, H.-H., Chen, D.-Q., Wang, Y.-N., Feng, Y.-L., Cao, G., Vaziri, N. D., & Zhao, Y.-Y. (2018). New insights into TGF-β/Smad signaling in tissue fibrosis. Chemico-Biological Interactions, 292, 76–83. https://doi.org/10.1016/j.cbi.2018.07.008
Huang, Y., Qi, Y., Du, J.-Q., & Zhang, D. (2014). MicroRNA-34a regulates cardiac fibrosis after myocardial infarction by targeting Smad4. Expert Opinion on Therapeutic Targets, 18(12), 1355–1365. https://doi.org/10.1517/14728222.2014.961424
Ikeda, S., Kong, S. W., Lu, J., Bisping, E., Zhang, H., Allen, P. D., Golub, T. R., Pieske, B., & Pu, W. T. (2007). Altered microRNA expression in human heart disease. Physiological Genomics, 31(3), 367–373. https://doi.org/10.1152/physiolgenomics.00144.2007
Kim, Y. J., Hwang, S. J., Bae, Y. C., & Jung, J. S. (2009). MiR-21 regulates adipogenic differentiation through the modulation of TGF-β signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells, 27(12), 3093–3102. https://doi.org/10.1002/stem.235
Klinkenberg, L. J. J., Luyten, P., Van Der Linden, N., Urgel, K., Snijders, D. P. C., Knackstedt, C., Dennert, R., Kietselaer, B. L. J. H., Mingels, A. M. A., & Cardinaels, E. P. M. (2016). Cardiac troponin T and I release after a 30-km run. The American Journal of Cardiology, 118(2), 281–287. https://doi.org/10.1016/j.amjcard.2016.04.030
Lew, J. K.-S., Pearson, J. T., Saw, E., Tsuchimochi, H., Wei, M., Ghosh, N., Du, C.-K., Zhan, D.-Y., Jin, M., & Umetani, K. (2020). Exercise regulates microRNAs to preserve coronary and cardiac function in the diabetic heart. Circulation Research, 127(11), 1384–1400. https://doi.org/10.1161/CIRCRESAHA.120.317604
Li, H., Zhang, X., Wang, F., Zhou, L., Yin, Z., Fan, J., Nie, X., Wang, P., Fu, X.-D., & Chen, C. (2016). MicroRNA-21 lowers blood pressure in spontaneous hypertensive rats by upregulating mitochondrial translation. Circulation, 134(10), 734–751. https://doi.org/10.1161/CIRCULATIONAHA.116.023926
Li, Y., Yao, M., Zhou, Q., Cheng, Y., Che, L., Xu, J., Xiao, J., Shen, Z., & Bei, Y. (2018). Dynamic regulation of circulating microRNAs during acute exercise and long-term exercise training in basketball athletes. Frontiers in Physiology, 9, 282. https://doi.org/10.3389/fphys.2018.00282
Li, Z., Liu, L., Hou, N., Song, Y., An, X., Zhang, Y., Yang, X., & Wang, J. (2016). miR-199-sponge transgenic mice develop physiological cardiac hypertrophy. Cardiovascular Research, 110(2), 258–267. https://doi.org/10.1093/cvr/cvw052
Liu, X., Xiao, J., Zhu, H., Wei, X., Platt, C., Damilano, F., Xiao, C., Bezzerides, V., Boström, P., & Che, L. (2015). miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metabolism, 21(4), 584–595. https://doi.org/10.1016/j.cmet.2015.02.014
Luna, C., Li, G., Qiu, J., Epstein, D. L., & Gonzalez, P. (2011). MicroRNA‐24 regulates the processing of latent TGFβ1 during cyclic mechanical stress in human trabecular meshwork cells through direct targeting of FURIN. Journal of Cellular Physiology, 226(5), 1407–1414. https://doi.org/10.1002/jcp.22476
Mooren, F. C., Viereck, J., Krüger, K., & Thum, T. (2014). Circulating microRNAs as potential biomarkers of aerobic exercise capacity. American Journal of Physiology-Heart and Circulatory Physiology, 306(4), H557–H563. https://doi.org/10.1152/ajpheart.00711.2013
Nemecz, M., Alexandru, N., Tanko, G., & Georgescu, A. (2016). Role of microRNA in endothelial dysfunction and hypertension. Current Hypertension Reports, 18, 1–21. https://doi.org/10.1007/s11906-016-0696-8
Nielsen, S., Åkerström, T., Rinnov, A., Yfanti, C., Scheele, C., Pedersen, B. K., & Laye, M. J. (2014). The miRNA plasma signature in response to acute aerobic exercise and endurance training. PloS One, 9(2), e87308. https://doi.org/10.1371/journal.pone.0087308
Novoa, U., Arauna, D., Moran, M., Nuñez, M., Zagmutt, S., Saldivia, S., Valdes, C., Villaseñor, J., Zambrano, C. G., & Gonzalez, D. R. (2017). High‐intensity exercise reduces cardiac fibrosis and hypertrophy but does not restore the nitroso‐redox imbalance in diabetic cardiomyopathy. Oxidative Medicine and Cellular Longevity, 2017(1), 7921363. https://doi.org/10.1155/2017/7921363
Pala, M., Gorucu Yilmaz, S., Altan, M., Sonmez, O. F., Dincer, S., Mengi, M., Karabulut, A., Tecellioglu, F. S., Akbas, F., & Yildiz, M. (2023). Deep phenotyping of miRNAs in exercise-induced cardiac hypertrophy and fibrosis. Journal of Biosciences, 48(4), 36. https://doi.org/10.1007/s12038-023-00360-4
Pelliccia, A., Heidbuchel, H., Corrado, D., Borjesson, M., & Sharma, S. (2019). The ESC textbook of sports cardiology. Oxford University Press.
Pickrell, J. K., Marioni, J. C., Pai, A. A., Degner, J. F., Engelhardt, B. E., Nkadori, E., Veyrieras, J.-B., Stephens, M., Gilad, Y., & Pritchard, J. K. (2010). Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature, 464(7289), 768–772. https://doi.org/10.1038/nature08872
Ramos, A. E., Lo, C., Estephan, L. E., Tai, Y.-Y., Tang, Y., Zhao, J., Sugahara, M., Gorcsan III, J., Brown, M. G., & Lieberman, D. E. (2018). Translational Physiology: Specific circulating microRNAs display dose-dependent responses to variable intensity and duration of endurance exercise. American Journal of Physiology-Heart and Circulatory Physiology, 315(2), H273. https://doi.org/10.1152/ajpheart.00741.2017
Riebe, D., Ehrman, J. K., Liguori, G., Magal, M., & Medicine, A. C. of S. (2018). ACSM’s guidelines for exercise testing and prescription. (No Title).
Russo, I., & Frangogiannis, N. G. (2016). Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities. Journal of Molecular and Cellular Cardiology, 90, 84–93. https://doi.org/10.1016/j.yjmcc.2015.12.011
Soci, U. P. R., Fernandes, T., Hashimoto, N. Y., Mota, G. F., Amadeu, M. A., Rosa, K. T., Irigoyen, M. C., Phillips, M. I., & Oliveira, E. M. (2011). MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiological Genomics, 43(11), 665–673. https://doi.org/10.1152/physiolgenomics.00145.2010
Stølen, T. O., Høydal, M. A., Ahmed, M. S., Jørgensen, K., Garten, K., Hortigon-Vinagre, M. P., Zamora, V., Scrimgeour, N. R., Berre, A. M. O., & Nes, B. M. (2020). Exercise training reveals micro-RNAs associated with improved cardiac function and electrophysiology in rats with heart failure after myocardial infarction. Journal of Molecular and Cellular Cardiology, 148, 106–119. https://doi.org/10.1016/j.yjmcc.2020.08.015
Sun, C., Tian, X., Jia, Y., Yang, M., Li, Y., & Fernig, D. G. (2022). Functions of exogenous FGF signals in regulation of fibroblast to myofibroblast differentiation and extracellular matrix protein expression. Open Biology, 12(9), 210356. https://doi.org/10.1098/rsob.210356
Tang, Y., Zhang, Y., Chen, Y., Xiang, Y., Shen, C., & Li, Y. (2015). The role of miR-19b in the inhibition of endothelial cell apoptosis and its relationship with coronary artery disease. Scientific Reports, 5(1), 15132. https://doi.org/10.1038/srep15132
Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., Galuppo, P., Just, S., Rottbauer, W., & Frantz, S. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456(7224), 980–984. https://doi.org/10.1038/nature07511
Tijsen, A. J., Van Der Made, I., van den Hoogenhof, M. M., Wijnen, W. J., van Deel, E. D., De Groot, N. E., Alekseev, S., Fluiter, K., Schroen, B., & Goumans, M.-J. (2014). The microRNA-15 family inhibits the TGFβ-pathway in the heart. Cardiovascular Research, 104(1), 61–71. https://doi.org/10.1093/cvr/cvu184
Van Rooij, E., & Olson, E. N. (2009). Searching for miR-acles in cardiac fibrosis. In Circulation research (Vol. 104, Issue 2, pp. 138–140). Am Heart Assoc. https://doi.org/10.1161/CIRCRESAHA.108.192492
Van Rooij, E., Sutherland, L. B., Thatcher, J. E., DiMaio, J. M., Naseem, R. H., Marshall, W. S., Hill, J. A., & Olson, E. N. (2008). Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proceedings of the National Academy of Sciences, 105(35), 13027–13032. https://doi.org/10.1073/pnas.0805038105
Wang, B., Haldar, S. M., Lu, Y., Ibrahim, O. A., Fisch, S., Gray, S., Leask, A., & Jain, M. K. (2008). The Kruppel-like factor KLF15 inhibits connective tissue growth factor (CTGF) expression in cardiac fibroblasts. Journal of Molecular and Cellular Cardiology, 45(2), 193–197. https://doi.org/10.1016/j.yjmcc.2008.05.005
Wang, J., Huang, W., Xu, R., Nie, Y., Cao, X., Meng, J., Xu, X., Hu, S., & Zheng, Z. (2012). Micro RNA‐24 regulates cardiac fibrosis after myocardial infarction. Journal of Cellular and Molecular Medicine, 16(9), 2150–2160. https://doi.org/10.1111/j.1582-4934.2012.01523.x
Wang, J., Liew, O. W., Richards, A. M., & Chen, Y.-T. (2016). Overview of microRNAs in cardiac hypertrophy, fibrosis, and apoptosis. International Journal of Molecular Sciences, 17(5), 749. https://doi.org/10.3390/ijms17050749
Wang, K., Zhang, D. L., Long, B., An, T., Zhang, J., Zhou, L. Y., Liu, C. Y., & Li, P. F. (2015). NFAT4-dependent miR-324-5p regulates mitochondrial morphology and cardiomyocyte cell death by targeting Mtfr1. Cell Death & Disease, 6(12), e2007–e2007. https://doi.org/10.1038/cddis.2015.348
Weippert, M., Divchev, D., Schmidt, P., Gettel, H., Neugebauer, A., Behrens, K., Wolfarth, B., Braumann, K.-M., & Nienaber, C. A. (2016). Cardiac troponin T and echocardiographic dimensions after repeated sprint vs. moderate intensity continuous exercise in healthy young males. Scientific Reports, 6(1), 24614. https://doi.org/10.1038/srep24614
Xiao, L., He, H., Ma, L., Da, M., Cheng, S., Duan, Y., Wang, Q., Wu, H., Song, X., & Duan, W. (2017). Effects of miR-29a and miR-101a expression on myocardial interstitial collagen generation after aerobic exercise in myocardial-infarcted rats. Archives of Medical Research, 48(1), 27–34. https://doi.org/10.1016/j.arcmed.2017.01.006
Xu, T., Zhou, Q., Che, L., Das, S., Wang, L., Jiang, J., Li, G., Xu, J., Yao, J., & Wang, H. (2016). Circulating miR-21, miR-378, and miR-940 increase in response to an acute exhaustive exercise in chronic heart failure patients. Oncotarget, 7(11), 12414. https://doi.org/10.18632/oncotarget.6966
Yang, X., & Zhao, Z. (2022). miR-30a-5p inhibits the proliferation and collagen formation of cardiac fibroblasts in diabetic cardiomyopathy. Canadian Journal of Physiology and Pharmacology, 100(2), 167–175. https://doi.org/10.1139/cjpp-2021-0280
Yin, X., Cui, S., Li, X., Li, W., ju Lu, Q., hong Jiang, X., Wang, H., Chen, X., & zheng Ma, J. (2020). Regulation of circulatory muscle-specific microRNA during 8 km run. International Journal of Sports Medicine, 41(09), 582–588. Https://doi.org/10.1055/a-1145-3595
Zhang, J., Zhang, Z., Zhang, D. Y., Zhu, J., Zhang, T., & Wang, C. (2013). microRNA 126 inhibits the transition of endothelial progenitor cells to mesenchymal cells via the PIK3R2-PI3K/Akt signalling pathway. PloS One, 8(12), e83294. https://doi.org/10.1371/journal.pone.0083294
Copyright (c) 2024 Journal La Medihealtico
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.