In Vitro Anti-inflammatory Effect of Secretome from Umbilical Cord-derived Mesenchymal Stem Cells in COVID-19 Patient Blood: A Study on sIL-6R, sgp130, IL-1RA and Anti/pro Inflammatory Cytokines

  • Nisrina Asysyifa Master’s Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia
  • Heri Wibowo Department of Parasitology, Faculty of Medicine, Universitas Indonesia
  • Murdani Abdullah Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia
  • Isabella Kurna Liem Departement of Anatomy, Faculty of Medicine, Universitas Indonesia
  • Arleni Bustami Integrated Laboratory of Medical Faculty, Universitas Indonesia
Keywords: COVID-19, Secretome, sil-6R, sgp130, IL-1RA

Abstract

COVID-19 exhibits a wide range of clinical manifestations which severity of the disease is linked to uncontrolled escalation of inflammatory mediators. Ongoing research has identified the immunomodulatory effects of the MSC-derived secretome as a potential therapy for COVID-19. However, the precise mechanism by which the secretome exerts its therapeutic effect on COVID-19 remains unclear. This study aims to investigate whether the components of the UC-MSC-derived secretome can alter the inflammatory characteristics of immune cells. To achieve this, an in vitro study will be conducted involving co-incubation of whole blood with secretomes, followed by LPS stimulation. A total of 12 blood samples from severe COVID-19 and healthy subjects were cultured into three groups (RPMI control, 3μl and 9μl secretome group) incubated for 24 hours. Then, the cultures were exposed to LPS for 48 hours. The levels of sIL-6R, sgp130, IL-1RA, IL-6, TNF-α, IFN-γ, and IL-10 were measured. Results showed that LPS increased IL-6, TNF-α, and IL-10 production, while reducing sIL-6R, and sgp130, but no changes seen in IFN-γ in secretome-incubated blood cultures. The post-LPS/pre-LPS ratio analysis was conducted to investigate the anti-inflammatory potential of secretome. It was found that the secretome provides its anti-inflammatory effects through the role of IL-1RA.

References

Campbell, B. M., Charych, E., Lee, A. W., & Möller, T. (2014). Kynurenines in CNS disease: regulation by inflammatory cytokines. Frontiers in Neuroscience, 8, 12. https://doi.org/10.3389/fnins.2014.00012

Channappanavar, R., Fehr, A. R., Zheng, J., Wohlford-Lenane, C., Abrahante, J. E., Mack, M., Sompallae, R., McCray, P. B. J., Meyerholz, D. K., & Perlman, S. (2019). IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes. The Journal of Clinical Investigation, 129(9), 3625–3639. https://doi.org/10.1172/JCI126363

Chen, Y., Liu, Q., & Guo, D. (2020). Emerging coronaviruses: Genome structure, replication, and pathogenesis. Journal of Medical Virology, 92(4), 418–423. https://doi.org/10.1002/jmv.25681

Chouw, A., Milanda, T., Sartika, C. R., Kirana, M. N., Halim, D., & Faried, A. (2022). Potency of Mesenchymal Stem Cell and Its Secretome in Treating COVID-19. Regenerative Engineering and Translational Medicine, 8(1), 43–54. https://doi.org/10.1007/s40883-021-00202-5

Di Spigna, G., Spalletti Cernia, D., Vargas, M., Buonavolontà, L., Servillo, G., & Postiglione, L. (2020). Drastically elevated levels of Interleukin-6 and its soluble receptor complex in COVID-19 patients with acute respiratory distress. Clinical and Medical Investigations, 5(3), 1–4. https://doi.org/10.15761/cmi.1000211

Diao, B., Wang, C., Tan, Y., Chen, X., Liu, Y., Ning, L., Chen, L., Li, M., Liu, Y., Wang, G., Yuan, Z., Feng, Z., Zhang, Y., Wu, Y., & Chen, Y. (2020). Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Frontiers in Immunology, 11, 827. https://doi.org/10.3389/fimmu.2020.00827

Dinarello, C. A. (2018). Overview of the IL-1 family in innate inflammation and acquired immunity. Immunological Medicine, 281(1), 8–27. https://doi.org/10.1111/imr.12621.Overview

Dobashi, K., Aihara, M., Araki, T., Shimizu, Y., Utsugi, M., Iizuka, K., Murata, Y., Hamuro, J., Nakazawa, T., & Mori, M. (2001). Regulation of LPS induced IL-12 production by IFN-gamma and IL-4 through intracellular glutathione status in human alveolar macrophages. Clinical and Experimental Immunology, 124(2), 290–296. https://doi.org/10.1046/j.1365-2249.2001.01535.x

Gao, Z., Xu, Y., Sun, C., Wang, X., Guo, Y., & Qiu, S. (2020). A systematic review of asymptomatic infections. Journal of Microbiology Immunology and Infection, 51(1), 12–16.

Giamarellos-Bourboulis, E. J., Netea, M. G., Rovina, N., Akinosoglou, K., Antoniadou, A., Antonakos, N., Damoraki, G., Gkavogianni, T., Adami, M.-E., Katsaounou, P., Ntaganou, M., Kyriakopoulou, M., Dimopoulos, G., Koutsodimitropoulos, I., Velissaris, D., Koufargyris, P., Karageorgos, A., Katrini, K., Lekakis, V., … Koutsoukou, A. (2020). Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host & Microbe, 27(6), 992-1000.e3. https://doi.org/https://doi.org/10.1016/j.chom.2020.04.009

Hashemian, S.-M. R., Aliannejad, R., Zarrabi, M., Soleimani, M., Vosough, M., Hosseini, S.-E., Hossieni, H., Keshel, S. H., Naderpour, Z., Hajizadeh-Saffar, E., Shajareh, E., Jamaati, H., Soufi-Zomorrod, M., Khavandgar, N., Alemi, H., Karimi, A., Pak, N., Rouzbahani, N. H., Nouri, M., … Baharvand, H. (2021). Mesenchymal stem cells derived from perinatal tissues for treatment of critically ill COVID-19-induced ARDS patients: a case series. Stem Cell Research & Therapy, 12(1), 91. https://doi.org/10.1186/s13287-021-02165-4

Kang, D. Y., Sp, N., Jo, E. S., Rugamba, A., Kim, H. Do, Kim, I. H., Park, J.-C., Bae, S. W., Jang, K.-J., & Yang, Y. M. (2021). Non-toxic sulfur inhibits LPS-induced inflammation by regulating TLR-4 and JAK2/STAT3 through IL-6 signaling. Molecular Medicine Reports, 24(1). https://doi.org/10.3892/mmr.2021.12124

Memoli, B., Grandaliano, G., Soccio, M., Postiglione, L., Guida, B., Bisesti, V., Esposito, P., Procino, A., Marrone, D., Michael, A., Andreucci, M., Schena, F. P., & Pertosa, G. (2005). In Vivo Modulation of Soluble “Antagonistic” IL-6 Receptor Synthesis and Release in ESRD. Journal of the American Society of Nephrology, 16(4).

Meng, F., Xu, R., Wang, S., Xu, Z., Zhang, C., Li, Y., Yang, T., Shi, L., Fu, J., Jiang, T., Huang, L., Zhao, P., Yuan, X., Fan, X., Zhang, J. Y., Song, J., Zhang, D., Jiao, Y., Liu, L., … Wang, F. S. (2020). Human umbilical cord-derived mesenchymal stem cell therapy in patients with COVID-19: a phase 1 clinical trial. Signal Transduction and Targeted Therapy, 5(1). https://doi.org/10.1038/s41392-020-00286-5

Mihara, M., Hashizume, M., Yoshida, H., Suzuki, M., & Shiina, M. (2011). IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clinical Science, 122(4), 143–159. https://doi.org/10.1042/CS20110340

NCDC. (2020). Coronavirus disease (COVID-2019) situation reports. World Health Organisation.

Negishi, H., Taniguchi, T., & Yanai, H. (2018). The Interferon (IFN) Class of Cytokines and the IFN Regulatory Factor (IRF) Transcription Factor Family. Cold Spring Harbor Perspectives in Biology, 10(11). https://doi.org/10.1101/cshperspect.a028423

Ngkelo, A., Meja, K., Yeadon, M., Adcock, I., & Kirkham, P. A. (2012). LPS induced inflammatory responses in human peripheral blood mononuclear cells is mediated through NOX4 and Giα dependent PI-3kinase signalling. Journal of Inflammation (London, England), 9(1), 1. https://doi.org/10.1186/1476-9255-9-1

Richardson, S., Hirsch, J. S., Narasimhan, M., Crawford, J. M., McGinn, T., Davidson, K. W., & Consortium, and the N. C.-19 R. (2020). Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA, 323(20), 2052–2059. https://doi.org/10.1001/jama.2020.6775

Rose-John, S. (2020). Interleukin-6 signalling in health and disease. F1000 Research, 9(Faculty Rev), 1013. https://doi.org/10.12688/f1000research.26058.1

Shekhawat, J., Gauba, K., Gupta, S., Purohit, P., Mitra, P., Garg, M., Misra, S., Sharma, P., & Banerjee, M. (2021). Interleukin-6 Perpetrator of the COVID-19 Cytokine Storm. Indian Journal of Clinical Biochemistry, 36(4), 440–450. https://doi.org/10.1007/s12291-021-00989-8

Shi, L., Wang, L., Xu, R., Zhang, C., Xie, Y., Liu, K., Li, T., Hu, W., Zhen, C., & Wang, F. S. (2021). Mesenchymal stem cell therapy for severe COVID-19. Signal Transduction and Targeted Therapy, 6(1), 1–5. https://doi.org/10.1038/s41392-021-00754-6

Steensberg, A., Fischer, C. P., Keller, C., Møller, K., & Pedersen, B. K. (2003). IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. American Journal of Physiology. Endocrinology and Metabolism, 285(2), E433-7. https://doi.org/10.1152/ajpendo.00074.2003

Tanaka, T., Narazaki, M., & Kishimoto, T. (2018). Interleukin (IL-6) Immunotherapy. Cold Spring Harbor Perspectives in Biology, 10, 1–15. http://doi.org/10.1101/cshperspect.a028456

Tang, X.-D., Shi, L., Monsel, A., Li, X.-Y., Zhu, H.-L., Zhu, Y.-G., & Qu, J.-M. (2017). Mesenchymal Stem Cell Microvesicles Attenuate Acute Lung Injury in Mice Partly Mediated by Ang-1 mRNA. Stem Cells (Dayton, Ohio), 35(7), 1849–1859. https://doi.org/10.1002/stem.2619

Tau, G. Z., Cowan, S. N., Weisburg, J., Braunstein, N. S., & Rothman, P. B. (2001). Regulation of IFN-γ signaling is essential for the cytotoxic activity of CD8+ T cells. The Journal of Immunology, 167(10), 5574–5582.

Tilg, H., Trehu, E., Atkins, M. B., Dinarello, C. A., & Mier, J. W. (1994). Interleukin-6 (IL-6) as an anti-inflammatory cytokine: induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55. Blood, 83(1), 113–118.

Turner, M. D., Nedjai, B., Hurst, T., & Pennington, D. J. (2014). Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochimica et Biophysica Acta - Molecular Cell Research, 1843(11), 2563–2582. https://doi.org/10.1016/j.bbamcr.2014.05.014

Vermes, C., Jacobs, J. J., Zhang, J., Firneisz, G., Roebuck, K. A., & Glant, T. T. (2002). Shedding of the interleukin-6 (IL-6) receptor (gp80) determines the ability of IL-6 to induce gp130 phosphorylation in human osteoblasts. The Journal of Biological Chemistry, 277(19), 16879–16887. https://doi.org/10.1074/jbc.M200546200

Volarevic, V., Arsenijevic, N., Lukic, M. L., & Stojkovic, M. (2011). Concise review: Mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells (Dayton, Ohio), 29(1), 5–10. https://doi.org/10.1002/stem.556

Xu, R., Feng, Z., & Wang, F. (2022). Mesenchymal stem cell treatment for COVID-19. EBiomedicine, 77(Figure 1). https://doi.org/10.1016/j.ebiom.2022.103920

Xu, Y., Zhu, J., Feng, B., Lin, F., Zhou, J., Liu, J., Shi, X., Lu, X., Pan, Q., Yu, J., Zhang, Y., Li, L., & Cao, H. (2021). Immunosuppressive effect of mesenchymal stem cells on lung and gut CD8+ T cells in lipopolysaccharide-induced acute lung injury in mice. Cell Proliferation, 54(5), e13028. https://doi.org/https://doi.org/10.1111/cpr.13028

Published
2024-10-31
How to Cite
Asysyifa, N., Wibowo, H., Abdullah, M., Liem, I. K., & Bustami, A. (2024). In Vitro Anti-inflammatory Effect of Secretome from Umbilical Cord-derived Mesenchymal Stem Cells in COVID-19 Patient Blood: A Study on sIL-6R, sgp130, IL-1RA and Anti/pro Inflammatory Cytokines. Journal La Medihealtico, 5(5), 967-977. https://doi.org/10.37899/journallamedihealtico.v5i5.1522