Perspective of Delayed Hypersensitivity: A review

Nnodim Johnkennedy¹, Njoku-Obi Treasure², Bako Hauwa³

¹Department of Medical Laboratory Science, Faculty of Health Science, Imo State University, Owerri, Imo State, Nigeria
²Department of Microbiology, Faculty of Sciences, Imo State University, Owerri, Imo State, Nigeria
³Department of Medical Laboratory Science, College of Medical Sciences Ahmadu Bello University, Zaria, Kaduna State, Nigeria

Article Info

Article history:
Received 2 March 2022
Received in revised form 28 March 2022
Accepted 31 March 2022

Keywords:
Perspective
Delayed Hypersensitivity
Reaction

Abstract

T cells enter tissues and are activated by antigen-presenting cells to produce cytokines that cause inflammation in the local area. In allergic contact dermatitis, drug eruptions, asthma, and autoimmune disorders, CD8+ T lymphocytes mediate DTH reactions. As an example of this type IV hypersensitivity, chronic DTH reactions, contact hypersensitivity, and hypersensitivity pneumonitis are all examples. Infiltration of an antigen-exposed region by Th1 cells and macrophages, which inflict tissue damage, is the primary cause of the delayed onset of symptoms. It has thus been outlined that this delayed hypersensitivity reaction.

Introduction

Allergy hypersensitivity is a condition in which the body's immune system overreacts to a specific substance known as an allergen. There are four distinct forms of hypersensitivity reactions, each with a distinct clinical presentation and underlying pathology. But it is important to mention delayed type hypersensitive reaction, in which the reaction develops within 2 to 3 days of exposure to the specific chemical. Type IV hypersensitivity reaction Polak et al. (1968) describes it.

Mononuclear leukocytes initiate the inflammatory response known as delayed hypersensitivity reaction (DTH). Immunity to mycobacteria, fungus, and other parasites can be boosted by this defense mechanism. Tumor immunity and transplant rejection are two examples of this phenomenon. To distinguish between an immediate hypersensitive reaction, which occurs within 12 minutes of an antigen challenge, and a secondary cellular response, which occurs 48 to 72 hours later, this test is used. T cells and monocytes/macrophages rather than antibodies mediate these reactions (Poulter et al., 1982).

Various sections of the body may be affected. Examples of these include, but are not limited to: Inflammation of the thyroid (Mills et al., 2013); atopic dermatitis; tuberculosis; hypersensitivity pneumonitis; pancreas; and the pancreas.

T-cells are responsible for delayed hypersensitivity reactions. This suggests that CD4+ T-lymphocytes, which have been specially sensitized, are the ones that start the reactions. A specific allergen must be exposed to repeatedly in order to acquire this type of sensitivity. When exposed to the allergen again after sensitization, immunologically committed lymphocytes react with the allergen and harm tissue either directly or by releasing cytokines.
that activate eosinophils, monocytes, neutrophils, macrophages and killer cells (Bansal & Sharma, 2012).

As an alternative to serum, lymphocytes from sensitized animals can transmit delayed-type hypersensitivity, which is an allergic immunological reaction. A condition known as cell-mediated hypersensitivity is the cause of this reaction. Six to 12 hours after antigen delivery in sensitized individuals, macroscopically inflammatory reactions begin. There are various exceptions to the rule that reactivity peaks 24–72 hours following antigen encounter (Riedel & Casillas, 2003).

Immune cells mediate delayed hypersensitivity. This suggests that antibodies do not play a role, but rather, the interaction of T cells with antigens is the primary factor. The body's reactions are mostly dictated by the presence of adequate numbers of T cells that are capable of recognizing an antigen. There must be a migration of the particular T cells to the location of the antigen. It takes a long time to develop, and the first symptoms show within 18 to 24 hours of the administration of the antigen. If the antigen remains, they can last for a long period of time, or they can be short-lived (Kanani et al., 2011)

In delayed hypersensitivity, the T cells implicated are memory cells that have been stimulated by the same antigen in the past. Hypersensitive individuals often remain that way for months or years after being exposed to an antigen that triggers their immune system into overreacting. Antigens on the surface of macrophages reactivate T cells, which release cytokines that attract and activate other immune cells, such as lymphocytes and phagocytes. Tuberculin-type and contact hypersensitivity are two common instances of delayed hypersensitivity that demonstrate the varied effects (Druszczynska et al., 2017).

Pathophysiology of Delayed Hypersensitivity

T cells and macrophages play a major role in the cellular events that lead to delayed hypersensitivity reactions. Endothelial cell adhesion molecules are up-regulated at the location of foreign antigen, encouraging leukocyte accumulation at the tissue site (Friedmann, 1989; Godfrey & Gell, 1978). macrophages and monocytes ingest the antigen and process it for presentation to a T cell that recognizes the processed antigen. Lymphoma-inducing molecules, such as interleukin-1 (IL), IL-2, and IL-6, are produced by macrophages. Activation of cytotoxic T cells is also possible. The enlisted macrophages can grow to enormous proportions. Grass-like infiltrates of macrophages and T cells are histologically known as granulomas. Granulomatous inflammation is the term used to describe this sort of tissue infiltration (Bahwere et al., 2017).

Several DTH subtypes exist, each with slightly distinct pathophysiologic processes. The epidermis is implicated in touch hypersensitivity reactions, while the lung tissue is involved in TB (Galvan-Blasco et al., 2019).

Risk factors and Progression of Hypersensitivity Reaction Type IV

Some illnesses, such as autoimmune diseases, are more prevalent in women. Others, such as allergic contact dermatitis, tend to be more prevalent in men. We don't know what causes these kinds of disparities. In the same way, ethnic and geographic variances play a role in certain diseases (Li & Shi, 2018). Instead of antibodies, delayed hypersensitivity is marked by a cell-mediated response rather than an antibody-mediated response. Cell-mediated hypersensitivity refers to the formation of the sensitivity by T cells. White blood cells called T lymphocytes are found throughout the body.

T-cells become activated after being exposed to antigens and through a sequence of metabolic reactions. T cells mobilize other white blood cells to mount an immune response by releasing substances. Unlike other types of hypersensitivity reactions, the whole cascade of reactions takes 2-3 days to develop (Wen et al., 2019).
Diagnosis

Antigens can be used to perform a delayed hypersensitivity skin test, which can then be used in conjunction with a patient's medical history and current symptoms to confirm the diagnosis. The tuberculin test may produce an overwhelming reaction in patients with pulmonary tuberculosis, however this may not be the case in patients with sarcoidosis. To determine which allergy is causing the problem, a patient should be tested with a variety of them (Mahler et al., 2014). For tuberculosis, the culture of microorganisms can be useful in determining the reason of delayed hypersensitivity disease. It is possible that histopathology will be used in the diagnosis of a Delayed Hypersensitivity Reaction (DHR) or other health condition. To determine the nature of the disease, a biopsy can be performed on the tissue in question and the appropriate treatment can be applied. Routine immunological testing is possible. CBC, T-cell subpopulation, radioallergosorbent test (RAST), and other tests include serology, chest x-ray, body radiography, diagnostic ultrasound, and computed tomography (CT) scan (Thangaraju & Venkatesan, 2018).

Conclusion

A basic immune response known as delayed hypersensitivity occurs when sensitized T cells are activated by antigen interaction. T cells and macrophages are to blame. There is an increase in leukocyte concentration in tissues where immunological and inflammatory responses are occurring in response to external antigens because of the upregulation of endothelial cell adhesion molecule expression. Physical and emotional cues, such as sound, sigh, touch, or scent, are extremely perceptible to people with this disorder. They can also be easily overwhelmed by an abundance of information. Treatment options include topical corticosteroid formulations. However, axillary lymphadenopathy and fever may occur as a result of a delayed hypersensitivity skin test. To address these symptoms, antipyretic medicine can be used.

References


