Land Use Change and Carbon Stocks in the Toari Watershed

  • Kahirun Department of Environmental Science, Faculty of Forestry and Environmental Science, Universitas Halu Oleo, Kendari, Sulawesi Tenggara, 93232, Indonesia
  • La Baco S Department of Environmental Science, Faculty of Forestry and Environmental Science, Universitas Halu Oleo, Kendari, Sulawesi Tenggara, 93232, Indonesia
  • Muhsimin Department of Environmental Science, Faculty of Forestry and Environmental Science, Universitas Halu Oleo, Kendari, Sulawesi Tenggara, 93232, Indonesia
  • Saleh Qadri Department of Environmental Science, Faculty of Forestry and Environmental Science, Universitas Halu Oleo, Kendari, Sulawesi Tenggara, 93232, Indonesia
  • Ardi Department of Environmental Science, Faculty of Forestry and Environmental Science, Universitas Halu Oleo, Kendari, Sulawesi Tenggara, 93232, Indonesia
Keywords: Carbon Stocks, Climate Change, Land Use Change, Secondary Dryland Forests, Watersheds

Abstract

Changes in land use are linked to climate change, resulting in the loss of carbon reserves due to decrease in vegetated land. Forests play crucial role in carbon storage. This research aims to determine carbon storage in the Toari Watershed, Southeast Sulawesi, in response to land use changes. The method uses GIS analysis to track changes in land use from 1991 to 2023, employing the SRTM Digital Elevation Model (DEM) for delineation. Carbon storage is calculated by multiplying the area of each land use by its respective carbon content value.  The results of this research show that there have been significant land changes occurring from 1991 to 2023. Forest land is the land use with the most extensive changes, experiencing decrease in area of 7,181.20 hectares. This was also followed by increased  mixed dryland farming use by 5,579.23 hectares, plantations by 1,994.28 hectares, residential land by 353.13 hectares, and open land by 640.85 hectares. From 1991 to 2023, land use changes had big impact on carbon stocks in the Toari Watershed. The largest decrease occurred in secondary dryland forests, leading to reduction of 741,530.7 tons C. Conversely, mixed agricultural land and plantations saw increases of 167,376.90 tons C and 125,639.60 tons C, respectively. Open land and residential areas also registered increases in carbon stocks. These findings highlight the influence of land use on carbon stock changes. The carbon stocks in the Toari Watershed decreased from 1,142,112.3 tons C in 1991 to 728,627.9 tons C in 2023 due to changes in land use.

References

Adamo, N., Al-Ansari, N., & Sissakian, V. (2021). Review of climate change impacts on human environment: past, present and future projections. Engineering, 13(11), 605-630. https://doi.org/10.4236/eng.2021.1311044

Ameray, A., Bergeron, Y., Valeria, O., Montoro Girona, M., & Cavard, X. (2021). Forest carbon management: A review of silvicultural practices and management strategies across boreal, temperate and tropical forests. Current Forestry Reports, 1-22. https://doi.org/10.1007/s40725-021-00151-w

Anamulai, S., Sanusi, R., Zubaid, A., Lechner, A. M., Ashton-Butt, A., & Azhar, B. (2019). Land use conversion from peat swamp forest to oil palm agriculture greatly modifies microclimate and soil conditions. PeerJ, (10), 1-16. https://doi.org/10.7717/peerj.7656.

Asabere, S. B., Acheampong, R. A., Ashiagbor, G., Beckers, S. C., Keck, M., Erasmi, S., ... & Sauer, D. (2020). Urbanization, land use transformation and spatio-environmental impacts: Analyses of trends and implications in major metropolitan regions of Ghana. Land use policy, 96, 104707. https://doi.org/10.1016/j.landusepol.2020.104707

Bessou, C., Ferchaud, F., Gabrielle, B., & Mary, B. (2011). Biofuels, greenhouse gases and climate change. Sustainable Agriculture Volume 2, 365-468. https://doi.org/10.1007/978-94-007-0394-0_20

Clarke, B., Otto, F., Stuart-Smith, R., & Harrington, L. (2022). Extreme weather impacts of climate change: an attribution perspective. Environmental Research: Climate, 1(1), 012001. https://doi.org/10.1088/2752-5295/ac6e7d

Dagar, J. C., Gangaiah, B., & Gupta, S. R. (2020). Agroforestry to sustain island and coastal agriculture in the scenario of climate change: Indian perspective. Agroforestry for Degraded Landscapes: Recent Advances and Emerging Challenges-Vol. 1, 367-424. https://doi.org/10.1007/978-981-15-4136-0_13

Deb, D. (2022). The erosion of biodiversity and culture: Bankura district of West Bengal as an illustrative locale. Ecology, Economy and Society-the INSEE Journal, 5(1), 139-176. https://doi.org/10.22004/ag.econ.343116

Dong, N., Liu, Z., Luo, M., Fang, C., & Lin, H. (2019). The Effects of Anthropogenic Land Use Changes on Climate in China Driven by Global Socioeconomic and Emission Scenarios. Earth’s Future, 7(7), 784–804. https://doi.org/10.1029/2018EF000932

Feng, Y., Chen, S., Tong, X., Lei, Z., Gao, C., & Wang, J. (2020). Modeling changes in China’s 2000–2030 carbon stock caused by land use change. Journal of Cleaner Production, 252, 119659. https://doi.org/10.1016/j.jclepro.2019.119659

Gidey, E., Gitet, S., Mhangara, P., Dikinya, O., Hishe, S., Girma, A., Gebremeskel, G., Lottering, R., Zenebe, A., Birhane, E. (2023). Impact of urban and peri-urban growth on arable land (1976–2029) in a medium sized city of Shire Indaselassie, North Western Tigray, Ethiopia. SN Applied Sciences, 5(4), 1-13. https://doi.org/10.1007/s42452-023-05322-x

Gouhari, S., Forrest, A., & Roberts, M. (2021). Cost-effectiveness analysis of forest ecosystem services in mountain areas in Afghanistan. Land Use Policy, 108, 105670. https://doi.org/10.1016/j.landusepol.2021.105670

Halewood, M., Bedmar Villanueva, A., Rasolojaona, J., Andriamahazo, M., Rakotoniaina, N., Bossou, B., ... & Nnadozie, K. (2021). Enhancing farmers’ agency in the global crop commons through use of biocultural community protocols. Agriculture and Human Values, 38, 579-594. https://doi.org/10.1007/s10460-020-10164-z

Hanberry, B. B., Abrams, M. D., & Nowacki, G. J. (2024). Potential Interactions between Climate Change and Land Use for Forest Issues in the Eastern United States. Land. Multidisciplinary Digital Publishing Institute (MDPI), 13 (3), 1-20. https://doi.org/10.3390/land13030398.

Hazarika, B., & Bhattacharjee, N. (2021). Population Pressure and Its Impact on Forest Resources in North East India. Journal of Positive School Psychology, 2022(4), 4245–4255.

Herrmann, S. M., Brandt, M., Rasmussen, K., & Fensholt, R. (2020). Accelerating land cover change in West Africa over four decades as population pressure increased. Communications Earth & Environment, 1(1), 1-10. https://doi.org/10.1038/s43247-020-00053-y

Jiao, Y., Ding, Y., Zha, Z., & Okuro, T. (2019). Crises of biodiversity and ecosystem services in Satoyama landscape of Japan: A review on the role of management. Sustainability, 11(2), 454. https://doi.org/10.3390/su11020454

Kansanga, M. M., Kerr, R. B., Lupafya, E., Dakishoni, L., & Luginaah, I. (2021). Does participatory farmer-to-farmer training improve the adoption of sustainable land management practices?. Land Use Policy, 108, 105477. https://doi.org/10.1016/j.landusepol.2021.105477

Kansanga, M. M., Luginaah, I., Kerr, R. B., Dakishoni, L., & Lupafya, E. (2021). Determinants of smallholder farmers’ adoption of short-term and long-term sustainable land management practices. Renewable agriculture and food systems, 36(3), 265-277. https://doi.org/10.1017/S1742170520000289

Kumar, R., Kumar, A., Saikia, P. (2022). Deforestation and Forests Degradation Impacts on the Environment. In: Singh, V.P., Yadav, S., Yadav, K.K., Yadava, R.N. (eds) Environmental Degradation: Challenges and Strategies for Mitigation. Water Science and Technology Library, 104, 19-49. https://doi.org/10.1007/978-3-030-95542-7_2

López-Carr, D. (2021). A review of small farmer land use and deforestation in tropical forest frontiers: Implications for conservation and sustainable livelihoods. Land, 10(11), 1-23. https://doi.org/10.3390/land10111113

Mahtta, R., Fragkias, M., Güneralp, B., Mahendra, A., Reba, M., Wentz, E. A., & Seto, K. C. (2022). Urban land expansion: the role of population and economic growth for 300+ cities. Npj Urban Sustainability, 2(1), 5. https://doi.org/10.1038/s42949-022-00048-y

Mayer, M., Prescott, C. E., Abaker, W. E. A., Augusto, L., Cécillon, L., Ferreira, G. W. D., … Vesterdal, L. (2020). Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. Forest Ecology and Management. Elsevier B.V., 466 (4), 1-25. https://doi.org/10.1016/j.foreco.2020.118127

Mendoza-Ponce, A., Corona-Núñez, R. O., Nava, L. F., Estrada, F., Calderón-Bustamante, O., Martínez-Meyer, E., … Pardo-Villegas, P. D. (2021). Impacts of land management and climate change in a developing and socioenvironmental challenging transboundary region. Journal of Environmental Management, 300 (5), 1-10. https://doi.org/10.1016/j.jenvman.2021.113748.

Novita, A. A. (2021). Environmental Governance and Climate Change Adaptation in Indonesia. Jurnal Ilmiah Administrasi Publik, 7(1), 46–55. https://doi.org/10.21776/ub.jiap.2021.007.01.6.

Octavia, D., Suharti, S., Murniati, Dharmawan, I. W. S., Nugroho, H. Y. S. H., Supriyanto, B., ... & Ekawati, S. (2022). Mainstreaming smart agroforestry for social forestry implementation to support sustainable development goals in Indonesia: A review. Sustainability, 14(15), 9313. https://doi.org/10.3390/su14159313

Parmar, S. (2022). Assessment of Ecosystem Services and Agroecotourism in existing Agroforestry Systems of Kanatal-Dhanolti region of Garhwal Himalaya, India (Doctoral dissertation, College of Forestry, Ranichauri).

Piñeiro, V., Arias, J., Dürr, J., Elverdin, P., Ibáñez, A. M., Kinengyere, A., ... & Torero, M. (2020). A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nature Sustainability, 3(10), 809-820. https://doi.org/10.1038/s41893-020-00617-y

Prasada, I. Y., & Masyhuri. (2019). The Conversion of Agricultural Land in Urban Areas (Case Study of Pekalongan City, Central Java). Agraris, 5(2), 112–118. https://doi.org/10.18196/agr.5280

Rahman, F.A., Mubarokah, N., Yuhardi, E., Adiputra, A., Supriyadi, S., dan Suryawati, S. (2023). Perubahan Tutupan Lahan dan Stok Karbon Permukaan di Daerah Aliran Sungai (DAS) Blega. Jurnal Sumberdaya Alam Dan Lingkungan, 10(2), 69–78. https://doi.org/10.21776/ub.jsal.2023.010.02.3

Ray Biswas, R., & Rahman, A. (2023). Adaptation to climate change: A study on regional climate change adaptation policy and practice framework. Journal of Environmental Management, 336 (7), 1-17.

Shin, Y. J., Midgley, G. F., Archer, E. R., Arneth, A., Barnes, D. K., Chan, L., ... & Smith, P. (2022). Actions to halt biodiversity loss generally benefit the climate. Global change biology, 28(9), 2846-2874. https://doi.org/10.1111/gcb.16109

Singh, S., & Singh, G. (2023). Agroforestry for sustainable development: Assessing frameworks to drive agricultural sector growth. Environment, Development and Sustainability, 1-37. https://doi.org/10.1007/s10668-023-03551-z

Smith, C. C., Espírito‐Santo, F. D., Healey, J. R., Young, P. J., Lennox, G. D., Ferreira, J., & Barlow, J. (2020). Secondary forests offset less than 10% of deforestation‐mediated carbon emissions in the Brazilian Amazon. Global Change Biology, 26(12), 7006-7020. https://doi.org/10.1111/gcb.15352

Ssentongo, B., Egeru, A., & Barasa, B. (2024). Refugee settlement induces accelerated land use/cover change in Northern Uganda. Annals of GIS, 30(1), 137–149. https://doi.org/10.1080/19475683.2024.2304696.

Sulistyono, N., Bastian Samuel P. Ginting, Pindi Patana, & Susilowati, A. (2019). Land Cover Change and Deforestation Characteristics in The Management Section of National Park (MNSP) VI Besitang, Gunung Leuser National Park. Journal of Sylva Indonesiana, 2(2), 91–100. https://doi.org/10.32734/jsi.v2i2.1120.

Tong, Q., & Qiu, F. (2020). Population growth and land development: Investigating the bi-directional interactions. Ecological Economics, 169, 106505. https://doi.org/10.1016/j.ecolecon.2019.106505.

Tui, S. H. K., Descheemaeker, K., Valdivia, R. O., Masikati, P., Sisito, G., Moyo, E. N., Crespo, O., Ruane, A. C., & Rosenzweig, C. (2021). Climate change impacts and adaptation for dryland farming systems in Zimbabwe: a stakeholder-driven integrated multi-model assessment. Climatic Change, 168(10), 1–21. https://doi.org/10.1007/s10584-022-03433-9.

Zhao, S., & Yin, M. (2023). Change of urban and rural construction land and driving factors of arable land occupation. PLoS One, 18(5), e0286248. https://doi.org/10.1371/journal.pone.0286248

Zina, V., Duarte, G., Fonseca, A., Conde, S., Ferreira, M. T., Franco, J. C., & Fernandes, M. R. (2022). Land use system, invasive species and shrub diversity of the riparian ecological infrastructure determine the specific and functional richness of ant communities in Mediterranean river valleys. Ecological Indicators, 145, 109613. https://doi.org/10.1016/j.ecolind.2022.109613

Published
2024-08-22
How to Cite
Kahirun, K., Baco S, L., Muhsimin, M., Qadri, S., & Ardi, A. (2024). Land Use Change and Carbon Stocks in the Toari Watershed. Journal La Lifesci, 5(4), 369-381. https://doi.org/10.37899/journallalifesci.v5i4.1458