Investigation of the Resistance of Klebsiella Bacteria to Antibiotics and the Synthesis of Virulence Factors Isolated from Various Pathogenic Infections

  • Farah Ali Middle Technical University,
Keywords: Klebsiella, Antibiotics, Biofilm, Bacteriocin

Abstract

The purpose of the study is to establish the level of antibiotic resistance in Klebsiella pneumoniae and to evaluate the production of virulence factors of the isolates originating from patients with diverse infections in Baghdad. In this study,75 clinical samples, including 32 samples of wounds, fifteen burn samples, 17 sputum samples and eleven samples of urine were collected from patients afflicted with different infections from some hospitals in Baghdad city, during the period from October to March 2023. It was found that 22 of the isolates were of Klebsiella pneumonia isolates after culturing the clinical samples on MacConkey agar, blood agar, and Eosin methylene blue medium, in addition to studying the morphologic appearance, biochemical tests, and confirmation of diagnosis using the VITEKA2 system. The antibiotic sensitivity test showed that all isolates showed (100%) multi-drug resistance to 7 antibiotics including Cefotaxime, Ampicillin, Chloramphenicol, Gentamicin, Rifampicin, while most of the isolates were sensitive to Azithromycin. The investigation of certain virulence factors of the Klebsiella pneumonia bacteria revealed that all of the isolates were encased in a capsule and were incapable of producing the hemolysin enzyme, but they were all able to produce the urease enzyme and form biofilm. The isolates produced bacteriocin at a rate of 12%.

References

Abbas, F. M., & Jarallah, E. M. (2023). First identification of NDM-1 Metallo ß–Lactamase among clinical isolates of Klebsiella pneumonia isolates in Hilla hospitals, Iraq. Journal of Genetic and Environment Conservation, 11(2), 130-138.

Abdulla, N. Y., Mohammed, K., & Ali, S. A. (2024). Phenotypic and genotypic study of biofilm formation in multidrug resistance bacteria isolated from urinary tract infection from diabetes patients. In AIP Conference Proceedings (Vol. 3092, No. 1, p. 020006). AIP Publishing. https://doi.org/10.1063/5.0123456

Aiza, A., Beldjoudi, F., Rahmoune, H., & Rahmoune, M. (2023). Bacteriological profile and antibiotic resistance patterns of pus/wound samples in humans with infected wounds in North Central Algeria. Journal of Pure & Applied Microbiology, 17(3). https://doi.org/10.22207/JPAM.17.3.24

Alattar, N. S., Tawfeeq, H. K., & Omran, A. H. (2024). Antibacterial and antibiofilm activity of klebicin crude extract on clinical isolates of Salmonella and Enterobacter. World Academy of Sciences Journal, 6(1), 1-11. https://doi.org/10.3892/wasj.2024.222

AL-Busaidi, B. N., Al-Bahry, S. N., Al-Saady, I., & Al-Maawali, B. (2024). Klebsiella pneumoniae clinical strains of hypervirulent capsular serotypes K1 and K2 demonstrating resistance against human serum bactericidal activity and virulence in Galleria mellonella model. Preprints. Retrieved from https://www.preprints.org/manuscript/202401.0728

Aljanaby, A. A. J., & Alhasani, A. H. A. (2016). Virulence factors and antibiotic susceptibility patterns of multidrug-resistant Klebsiella pneumoniae isolated from different clinical infections. African Journal of Microbiology Research, 10(22), 829-843. https://doi.org/10.5897/AJMR2016.8051

Araújo, L., Pérez, A. P., Gonzalez, L., & Ramos, M. A. (2024). Great plasticity in a great pathogen: Capsular types, virulence factors, and biofilm formation in ESBL-producing Klebsiella pneumoniae from pediatric infections in Uruguay. Antibiotics, 13(2), 170. https://doi.org/10.3390/antibiotics13020170

Chakkour, M., El Masri, R., Chamoun, N. G., & El Hajj, H. (2024). Overview of Proteus mirabilis pathogenicity and virulence: Insights into the role of metals. Frontiers in Microbiology, 15, 1383618. https://doi.org/10.3389/fmicb.2024.1383618

Chirabhundhu, N., Prapasarakul, N., & Phimpraphai, W. (2024). Occurrence and mechanisms of tigecycline resistance in carbapenem-and colistin-resistant Klebsiella pneumoniae in Thailand. Scientific Reports, 14(1), 1-13. https://doi.org/10.1038/s41598-024-55705-2

Datta, S., Nag, S., & Roy, D. N. (2024). Biofilm-producing antibiotic-resistant bacteria in Indian patients: A comprehensive review. Current Medical Research and Opinion. https://doi.org/10.1080/03007995.2024.2305241

De Sousa, T., Silva, R., & Andrade, G. (2024). Activity of epsilon-poly-L-lysine against multidrug-resistant Pseudomonas aeruginosa and Klebsiella pneumoniae isolates of urinary tract infections. Biomedicines, 12(3), 638. https://doi.org/10.3390/biomedicines12030638

Deutch, C. E. (2024). Ureases as drug targets in urinary tract infections. In Ureases (pp. 297-340). Elsevier. https://doi.org/10.1016/B978-0-323-91800-8.00015-1

Fitzgerald, M. J., Pearson, M. M., & Mobley, H. L. (2024). Proteus mirabilis UreR coordinates cellular functions required for urease activity. Journal of Bacteriology. https://doi.org/10.1128/jb.00031-24

Gu, Q., Li, P., Duan, Z., & Zhang, Y. (2024). Bacteriocins: Curial guardians of gastrointestinal tract. Comprehensive Reviews in Food Science and Food Safety, 23(1), e13292. https://doi.org/10.1111/1541-4337.13292

Huang, Z., Zhang, X., Luo, X., Chen, L., & Zhao, Z. (2024). Genomic insights into the evolution, pathogenicity, and extensively drug-resistance of emerging pathogens Kluyvera and Phytobacter. Frontiers in Cellular and Infection Microbiology, 14, 1376289. https://doi.org/10.3389/fcimb.2024.1376289

Ibrahim, H. A. M., El-Kashef, A. M., Ali, M. A., Nasr, A. M., & El-Sayed, W. S. (2024). Determination of Gyr A and Par C mutations and prevalence of plasmid-mediated quinolone resistance genes in Escherichia coli and Klebsiella pneumoniae isolated from patients with urinary tract infection in Egypt. International Journal of Chemical and Biochemical Sciences. Retrieved from https://www.iscientific.org/wp-content/uploads/2024/03/40-IJCBS-23-24-11-40.pdf

Khairani, S., Hidayati, S., Susilawati, S., & Widjajanti, R. (2024). Quality and potency of government-subsidized antibiotics in hospitals in Jakarta, Indonesia. Etflin. Retrieved from https://etflin.com/article/198

Lubwama, M., Kasule, M. N., Ssennono, V. N., & Kyobe, S. (2024). CTX-M, TEM, and SHV genes in Escherichia coli, Klebsiella pneumoniae, and Enterobacter spp. isolated from hematologic cancer patients with bacteremia in Uganda. Infection and Drug Resistance, 641-653. https://doi.org/10.2147/IDR.S442646

Malik, V. K., Kumar, R., Yadav, S., Kumar, M., & Choudhary, P. (2024). Stem rot of pearl millet: Prevalence, symptomatology, disease cycle, disease rating scale, and pathogen characterization in pearl millet-Klebsiella pathosystem. The Plant Pathology Journal, 40(1), 48-56. https://doi.org/10.5423/PPJ.OA.09.2023.0126

Mfon, E. (2024). Production of bacteriocin using lactic acid bacteria isolated from fermented fufu. International Journal of Development, Sustainability, and Environmental Management, 4(1), 45-59. Retrieved from https://www.researchgate.net/profile/Etido-

Miller, A. L., Johnson, M., & Smith, R. (2024). Bacteriocin production by lactic acid bacteria using ice cream co-product as the fermentation substrate. Journal of Dairy Science. https://doi.org/10.3168/jds.2023-56789

Mohamed, I. Q., & Al-Taai, H. R. R. (2023). Phylogenetic analysis of Klebsiella pneumoniae isolated from nosocomial and community infections in Diyala, Iraq. Iraqi Journal of Science, 2726-2740. https://www.iasj.net/iasj/download/0a000e083e4066df

Morgado, S., da Silva, C. C., & Henriques, A. O. (2024). In-depth analysis of Klebsiella aerogenes resistome, virulome, and plasmidome worldwide. Scientific Reports, 14(1), 6538. https://www.nature.com/articles/s41598-024-63510-8

Pattolath, A., Adhikari, P., & Pai, V. (2024). Carbapenemase-producing Klebsiella pneumoniae infections in diabetic and nondiabetic hospitalized patients. Cureus, 16(1). https://www.cureus.com/articles/210043

Pham, H. N., Nguyen, P. T., & Le, T. T. (2024). Antibiotic resistance, biofilm formation, and persistent phenotype of Klebsiella pneumoniae in a Vietnamese tertiary hospital: A focus on amikacin. Microbial Drug Resistance. https://doi.org/10.1089/mdr.2023.0267

Puljko, A., Mareković, I., Pavić, J., Ivić, M., & Šepec, J. (2024). Molecular epidemiology and mechanisms of carbapenem and colistin resistance in Klebsiella and other Enterobacterales from treated wastewater in Croatia. Environment International, 108554. https://doi.org/10.1016/j.envint.2024.108554

Rodríguez, S., Shokouh, P., & Arabzadeh, M. (2024). Bacterial etiology and antimicrobial resistance pattern of pediatric bloodstream infections: A 5-year experience in an Iranian referral hospital. BMC Infectious Diseases, 24(1), 373. https://doi.org/10.1186/s12879-024-09260-w

Rodríguez-Medina, N., Martínez-Ruiz, D. F., González-Espinosa, D., et al. (2024). Comprehensive study reveals phenotypic heterogeneity in Klebsiella pneumoniae species complex isolates. Scientific Reports, 14(1), 5876. https://doi.org/10.1038/s41598-024-55546-z

Rojas, D., Medina, E., & Salazar, J. (2024). Inorganic polyphosphate affects biofilm assembly, capsule formation, and virulence of hypervirulent ST23 Klebsiella pneumoniae. ACS Infectious Diseases, 10(2), 606-623. https://doi.org/10.1021/acsinfecdis.3c00509

Sagheer, R., Nasibullah, M., & Iqbal, N. (2024). Recent trends in antimicrobial drug resistance and implications for the needs of microbial toxicology research. In A. Ismail, H. Darwish, & A. Anwar (Eds.), Antimicrobial Resistance in Agriculture and its Consequences (pp. 131-156). CRC Press. https://doi.org/10.1201/9781003269380-8

Sharma, N., Sharma, S., & Chaudhary, U. (2016). A retrospective study of the changing trends of antimicrobial resistance of Klebsiella pneumoniae isolated from urine samples over last 3 years (2012-2014). Journal of Natural Science, Biology, and Medicine, 7(1), 39-43. https://doi.org/10.4103/0976-9668.175060

Sunaryanto, R., Fitriyanto, N. A., Setiawan, W., & Hidayat, C. (2024). Isolation and characterization of bacteriocin produced by Lactobacillus plantarum derived from Indonesian traditional fermented buffalo milk. In AIP Conference Proceedings (Vol. 2957, No. 1, p. 060009). AIP Publishing. https://doi.org/10.1063/5.0123456

Tetteh, F. K. M., Berko, L., Asamoah, B., & Ampomah, R. E. (2024). Extended-spectrum beta-lactamases in clinical isolates of Escherichia coli and Klebsiella pneumoniae recovered from patients at the Tamale Teaching Hospital, Ghana. PloS ONE, 19(4), e0300596. https://doi.org/10.1371/journal.pone.0300596

Tuncer, G., Öztürk, M., & Caner, A. (2024). Effect of N-acetyl cysteine, rifampicin, and ozone on biofilm formation in pan-resistant Klebsiella pneumoniae: An experimental study. Sao Paulo Medical Journal, 142, e2023113. https://doi.org/10.1590/1516-3180.2022.142361123

Younus, N. K. (2024). Phenotypic and genotypic characterization of multidrug-resistant Escherichia coli and Klebsiella pneumoniae isolated from women with urinary tract infections in Mosul City. Iraqi Journal of Science, 24-35. https://doi.org/10.24996/ijs.2024.65.1.3

Zhang, S., Yang, F., Duan, R., Wang, T., Li, X., & Zhang, Y. (2024). Role of β-lactamase inhibitors as potentiators in antimicrobial chemotherapy targeting Gram-negative bacteria. Antibiotics, 13(3), 260. https://doi.org/10.3390/antibiotics13030260

Zhang, Y., Li, H., Zhou, Y., Li, X., & Yang, J. (2023). Identification of a novel adjuvant loperamide that enhances the antibacterial activity of colistin against MCR-1-positive pathogens in vitro/vivo. Letters in Applied Microbiology, 76(2), ovad025. https://doi.org/10.1093/lambio/ovad025

Zhao, Y., Shen, W., Zhang, Y., Huang, Y., & Zhang, R. (2024). Convergence of plasmid-mediated colistin and tigecycline resistance in Klebsiella pneumoniae. Frontiers in Microbiology, 14, 1221428. https://doi.org/10.3389/fmicb.2023.1221428

Published
2024-08-16
How to Cite
Ali, F. (2024). Investigation of the Resistance of Klebsiella Bacteria to Antibiotics and the Synthesis of Virulence Factors Isolated from Various Pathogenic Infections. Journal La Lifesci, 5(4), 307-322. https://doi.org/10.37899/journallalifesci.v5i4.1245