DNA Profiling, Bioinformatics and Databases in Forensics: Human Identification Purposes
Abstract
Individual identification is an essential element in establishing truth the forensic investigation process, be it in criminal, medico-legal, or mass disasters case. When ante-mortem data are not available, the only thing that can be used is identification trough DNA. Alec Jeffrey, a geneticist (1984), found that certain regions of DNA contain repetitive sequences and the number of repetitions in individuals differs from one another. This identification method known as DNA profiling. DNA profiling is described as an important and significant discovery in forensics and has been considered as the standard in modern human identification. Until now, the recommended DNA profiling method must be based on the PCR to analyze degraded DNA and short-sized DNA (Short Tandem Repeats) through PCR amplification. In profiling, the result DNA amplification are analyzed through genetic markers (DNA Markers) and then matched into the database or compared with the collected reference samples. In the human genome, the genetic markers most frequently used in forensics are autosomal STR, Y-STR, mtDNA, X-STR, SNPs, and Amelogenin. Accomplishment of proving the suitability of DNA profiles, an application of bioinformatics in forensics is carried out. Bioinformatics is a combination of molecular biology and computer informatics that aims to manage and analyze data and store biological (genetic) information. DNA database is an application of bioinformatics in the form of special software which has become an important tool for biologists and forensics. This genetic database will predict the similarities between one DNA profile and another.
References
Angers, A., Kagkli, D. M., Oliva, L., Petrillo, M., & Raffael, B. (2019). Study on DNA Profilng Technology for Its Implementation in Central Schengen Information System.
Bader, S. (2016). A guide to forensic DNA profiling. John Wiley & Sons.
Beauchemin, D. (Ed.). (2020). Sample introduction systems in ICPMS and ICPOES. Newnes.
Bianchi, L., & Liò, P. (2007). Forensic DNA and bioinformatics. Briefings in bioinformatics, 8(2), 117-128. https://doi.org/10.1093/bib/bbm006
Bright, J. A., Kelly, H., Kerr, Z., McGovern, C., Taylor, D., & Buckleton, J. S. (2020). The interpretation of forensic DNA profiles: an historical perspective. Journal of the Royal Society of New Zealand, 50(2), 211-225. https://doi.org/10.1080/03036758.2019.1692044
Bukyya, J. L., Tejasvi, M. L. A., Avinash, A., P, C. H., Talwade, P., Afroz, M. M., ... & Srisha, V. (2021). DNA profiling in forensic science: A review. Global Medical Genetics, 8(04), 135-143. https://doi.org/10.1055/s-0041-1728689
Butler, J. M., & Hill, C. R. (2012). Biology and genetics of new autosomal STR loci useful for forensic DNA analysis.
Butler, J. M. (2014). Advanced topics in forensic DNA typing: interpretation. Academic Press.
Butler, J. M. (2011). Advanced topics in forensic DNA typing: methodology. Academic press..
Butler, J. M. (2009). Fundamentals of forensic DNA typing. Academic press.
Puch-Solis, R., & Pope, S. (2021). Interpretation of DNA data within the context of UK forensic science—evaluation. Emerging Topics in Life Sciences, 5(3), 405-413. https://doi.org/10.1042/ETLS20200340
Daeid, N. N., Rafferty, A., Butler, J., Chalmers, J., McVean, G., & Tully, G. (2017). Forensic DNA analysis: A primer for courts.
Dai, S., & Long, Y. (2015). Genotyping analysis using an RFLP assay. Plant Genotyping: Methods and Protocols, 91-99. https://doi.org/10.1007/978-1-4939-1966-6_7
Dash, H. R., Rawat, N., & Das, S. (2020). Alternatives to amelogenin markers for sex determination in humans and their forensic relevance. Molecular biology reports, 47(3), 2347-2360. https://doi.org/10.1007/s11033-020-05268-y
Dash, H. R., Rawat, N., Vajpayee, K., Shrivastava, P., & Das, S. (2021). Useful autosomal STR marker sets for forensic and paternity applications in the Central Indian population. Annals of Human Biology, 48(1), 37-48. https://doi.org/10.1080/03014460.2021.1877353
Sayers, E. W., Cavanaugh, M., Clark, K., Ostell, J., Pruitt, K. D., & Karsch-Mizrachi, I. (2020). GenBank. Nucleic acids research, 48(D1), D84-D86.
Gauthier, J., Vincent, A. T., Charette, S. J., & Derome, N. (2019). A brief history of bioinformatics. Briefings in bioinformatics, 20(6), 1981-1996. https://doi.org/10.1093/bib/bby063
Gill, P., Haned, H., Bleka, O., Hansson, O., Dørum, G., & Egeland, T. (2015). Genotyping and interpretation of STR-DNA: low-template, mixtures and database matches—twenty years of research and development. Forensic Science International: Genetics, 18, 100-117. https://doi.org/10.1016/j.fsigen.2015.03.014
Heathfield, L. J., Haikney, T. E., Mole, C. G., Finaughty, C., Zachou, A. M., & Gibbon, V. E. (2021). Forensic human identification: Investigation into tooth morphotype and DNA extraction methods from teeth. Science & Justice, 61(4), 339-344. https://doi.org/10.1016/j.scijus.2021.05.005
Jia, J., Liu, X., Fan, Q., Fang, C., Wang, M., Zhang, J., ... & Yan, J. (2021). Development and validation of a multiplex 19 X-chromosomal short tandem repeats typing system for forensic purposes. Scientific reports, 11(1), 609. https://doi.org/10.1038/s41598-020-80414-x
Kobilinsky, L. F., Levine, L., & Margolis-Nunno, H. (2007). Forensic DNA analysis. Infobase Publishing.
Liu, Y. Y., & Harbison, S. (2018). A review of bioinformatic methods for forensic DNA analyses. Forensic Science International: Genetics, 33, 117-128. https://doi.org/10.1016/j.fsigen.2017.12.005
Machado, H., & Granja, R. (2020). Forensic genetics in the governance of crime (p. 114). Springer Nature. https://library.oapen.org/handle/20.500.12657/23264
Manjunath, B. C., Chandrashekar, B. R., Mahesh, M., & Rani, R. V. (2011). DNA profiling and forensic dentistry–A review of the recent concepts and trends. Journal of forensic and legal medicine, 18(5), 191-197. https://doi.org/10.1016/j.jflm.2011.02.005
McCord, B. R., Gauthier, Q., Cho, S., Roig, M. N., Gibson-Daw, G. C., Young, B., ... & Duncan, G. (2018). Forensic DNA analysis. Analytical chemistry, 91(1), 673-688. https://doi.org/10.1021/acs.analchem.8b05318
Nwawuba, S. U., Momoh, S. M., & Nwokolo, C. C. (2020). Key DNA profiling markers for identification: A mini review. Pharm Pharmacol Int J, 8(6), 337-343. DOI: 10.15406/ppij.2020.08.00315
Ramlal, G., Vevaraju, D., Vemula, A. Y., Swapna, T., & Bindu, P. H. (2017). Extrication of DNA from burnt teeth exposed to environment. Journal of Clinical and Diagnostic Research: JCDR, 11(8), ZC120. https://doi.org/10.7860/JCDR/2017/26911.10525
Rudin, N., & Inman, K. (2001). An introduction to forensic DNA analysis. CRC press.
Stanley, U. N., Khadija, A. M., Bukola, A. T., Precious, I. O., & Davidson, E. A. (2020). Forensic DNA profiling: autosomal short tandem repeat as a prominent marker in crime investigation. The Malaysian journal of medical sciences: MJMS, 27(4), 22. https://doi.org/10.21315/mjms2020.27.4.3
Syndercombe Court, D. (2021). The Y chromosome and its use in forensic DNA analysis. Emerging topics in life sciences, 5(3), 427-441. https://doi.org/10.1042/ETLS20200339
Tan, W. C. D., Stasi, A., & Dhar, B. K. (2022). Forensic DNA profiling in the southern border provinces of Thailand: Ethical and regulatory issues. Forensic Science International, 336, 111322. https://doi.org/10.1016/j.forsciint.2022.111322
Voeten, R. L., Ventouri, I. K., Haselberg, R., & Somsen, G. W. (2018). Capillary electrophoresis: trends and recent advances. Analytical chemistry, 90(3), 1464-1481. https://doi.org/10.1021/acs.analchem.8b00015
Voeten, R. L., Ventouri, I. K., Haselberg, R., & Somsen, G. W. (2018). Capillary electrophoresis: trends and recent advances. Analytical chemistry, 90(3), 1464-1481. https://doi.org/10.1093/nsr/nwu008
Xiao, C., Yang, X., Liu, H., Liu, C., Yu, Z., Chen, L., & Liu, C. (2021). Validation and forensic application of a new 19 X-STR loci multiplex system. Legal Medicine, 53, 101957. https://doi.org/10.1016/j.legalmed.2021.101957
Zhang, Y., Yu, Z., Mo, X., Zhao, X., Li, W., Liu, H., ... & Sun, H. (2021). Development and validation of a new 18 X‐STR typing assay for forensic applications. Electrophoresis, 42(6), 766-773. https://doi.org/10.1002/elps.202000168
Copyright (c) 2024 Journal La Lifesci

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.