Genome Editing of Saccharomyces Cerevisiae Using CRISPR-Cas9 System

  • Yaseen Ismael Imran College of Biotechnology, Al-Nahrain University, Iraq
  • Ibrahim Abdulla Ahmed College of Biotechnology, Al-Nahrain University, Iraq
  • Ahmed Ali Mhawesh College of Biotechnology, Al-Nahrain University, Iraq
Keywords: Genome, Saccharomyces Cerevisiae, CRISPR-Cas9


Saccharomyces cerevisiae is an important yeast has been exploited for a long time to produce alcohol or bread. Moreover, genetically engineered S. cerevisiae cells continue to be used as cell factories for production of biofuels, pharmaceutical proteins and food additives. Genetically modified strain of S. cerevisiae created using traditional methods is laborious and time consuming. Recently, originally an immune system in archaea and bacteria, Clustered regularly interspaced short palindromic repeats “CRISPR” and CRISPR-associated “Cas” have been used exploited  as a flexible tool for genome editing. Until now, this tool has been applied to many organisms including yeast. Here, we review the importance of S. cerevisiae as an industrial platform and the use of CRISPR/Cas system and its applications in research and industry of this yeast.



Alberghina, L., Mavelli, G., Drovandi, G., Palumbo, P., Pessina, S., Tripodi, F., ... & Vanoni, M. (2012). Cell growth and cell cycle in Saccharomyces cerevisiae: basic regulatory design and protein–protein interaction network. Biotechnology advances, 30(1), 52-72.

Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., ... & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709-1712.

Botstein, D., & Fink, G. R. (2011). Yeast: an experimental organism for 21st Century biology. Genetics, 189(3), 695-704.

Brochado, A. R., Matos, C., Møller, B. L., Hansen, J., Mortensen, U. H., & Patil, K. R. (2010). Improved vanillin production in baker's yeast through in silico design. Microbial cell factories, 9(1), 1-15.

Burdelski C, Barreau Y, & Simon R,. (2015). Genome engineering with zinc-finger nucleases. GSA. 188(4): 773–782.

Chien, A., Edgar, D. B., & Trela, J. M. (1976). Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. Journal of bacteriology, 127(3), 1550-1557.

Chigira, Y., Oka, T., Okajima, T., & Jigami, Y. (2008). Engineering of a mammalian O-glycosylation pathway in the yeast Saccharomyces cerevisiae: production of O-fucosylated epidermal growth factor domains. Glycobiology, 18(4), 303-314.

Cho, S. W., Kim, S., Kim, Y., Kweon, J., Kim, H. S., Bae, S., & Kim, J. S. (2014). Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome research, 24(1), 132-141.

Cohen, S. N., Chang, A. C. Y., & Boyer, H. W. Helling. RB (1973). Proc. Nat. Acad. Sci., USA, 70, 3240-3244.

Danna, K., & Nathans, D. (1971). Specific cleavage of simian virus 40 DNA by restriction endonuclease of Hemophilus influenzae. Proceedings of the National Academy of Sciences, 68(12), 2913-2917.

Delneri, D. (2010). Barcode technology in yeast: application to pharmacogenomics. FEMS yeast research, 10(8), 1083-1089.

Demain, A. L., Phaff, H. J., & Kurtzman, C. P. (1998). The industrial and agricultural significance of yeasts. In The Yeasts (pp. 13-19). Elsevier.

Duina, A. A., Miller, M. E., & Keeney, J. B. (2014). Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system. Genetics, 197(1), 33-48.

Ghosh, A., Ando, D., Gin, J., Runguphan, W., Denby, C., Wang, G., ... & García Martín, H. (2016). 13C metabolic flux analysis for systematic metabolic engineering of S. cerevisiae for overproduction of fatty acids. Frontiers in bioengineering and biotechnology, 4, 76.

Gietz, R. D., & Schiestl, R. H. (2007). High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature protocols, 2(1), 31-34.

Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., ... & Oliver, S. G. (1996). Life with 6000 genes. Science, 274(5287), 546-567.

Haft, D. H., Selengut, J., Mongodin, E. F., & Nelson, K. E. (2005). A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol, 1(6), e60.

Hale, C. R., Zhao, P., Olson, S., Duff, M. O., Graveley, B. R., Wells, L., ... & Terns, M. P. (2009). RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell, 139(5), 945-956.

Hershey, A. D., & Chase, M. (1952). Independent functions of viral protein and nucleic acid in growth of bacteriophage. Journal of general physiology, 36(1), 39-56.

Hong, K. K., & Nielsen, J. (2012). Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cellular and Molecular Life Sciences, 69(16), 2671-2690.

Illumina. (2017). An introduction to Next-Generation Sequencing Technology. Illumina.

Ito, Y., Hirasawa, T., & Shimizu, H. (2014). Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling. Bioscience, biotechnology, and biochemistry, 78(1), 151-159.

Jansen, R., Embden, J. D. V., Gaastra, W., & Schouls, L. M. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Molecular microbiology, 43(6), 1565-1575.

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. science, 337(6096), 816-821.

Jung, J. Y., Yun, H. S., Lee, J. W., & Oh, M. K. (2011). Production of 1, 2-propanediol from glycerol in Saccharomyces cerevisiae. Journal of microbiology and biotechnology, 21(8), 846-853.

Kim, H., & Kim, J. S. (2014). A guide to genome engineering with programmable nucleases. Nature Reviews Genetics, 15(5), 321-334.

Kim, S., & Hahn, J. S. (2015). Efficient production of 2, 3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing. Metabolic engineering, 31, 94-101.

Kjeldsen, T. (2000). Yeast secretory expression of insulin precursors. Applied microbiology and biotechnology, 54(3), 277-286.

Klinner, U., & Schäfer, B. (2004). Genetic aspects of targeted insertion mutagenesis in yeasts. FEMS microbiology reviews, 28(2), 201-223.

Kogje, A., & Ghosalkar, A. (2016). Xylitol production by Saccharomyces cerevisiae overexpressing different xylose reductases using non-detoxified hemicellulosic hydrolysate of corncob. 3 Biotech, 6(2), 1-10.

Kornberg, A., Lehman, I. R., Bessman, M. J., & Simms, E. S. (1956). Enzymic synthesis of deoxyribonucleic acid. Biochimica et Biophysica Acta, 21(1), 197-198.

Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., ... & Church, G. M. (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121), 823-826.

Mitsui, R., Yamada, R., & Ogino, H. (2019). CRISPR system in the yeast Saccharomyces cerevisiae and its application in the bioproduction of useful chemicals. World Journal of Microbiology and Biotechnology, 35(7), 1-9.

Mortimer, R. K. (2000). Evolution and variation of the yeast (Saccharomyces) genome. Genome research, 10(4), 403-409.

Moscou, M. J., & Bogdanove, A. J. (2009). A simple cipher governs DNA recognition by TAL effectors. Science, 326(5959), 1501-1501.

Murakami, C., & Kaeberlein, M. (2009). Quantifying yeast chronological life span by outgrowth of aged cells. Journal of visualized experiments: JoVE, (27).

Nevoigt, E. (2008). Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 72(3), 379-412.

Nielsen, J., Larsson, C., van Maris, A., & Pronk, J. (2013). Metabolic engineering of yeast for production of fuels and chemicals. Current opinion in biotechnology, 24(3), 398-404.

Pereira, C., Bessa, C., Soares, J., Leao, M., & Saraiva, L. (2012). Contribution of yeast models to neurodegeneration research. Journal of Biomedicine and Biotechnology, 2012.

Qi, Y. (2017). Genome editing is revolutionizing biology. Qi Cell Biosci., 7: 35.

Rakestraw, J. A., Sazinsky, S. L., Piatesi, A., Antipov, E., & Wittrup, K. D. (2009). Directed evolution of a secretory leader for the improved expression of heterologous proteins and full‐length antibodies in Saccharomyces cerevisiae. Biotechnology and bioengineering, 103(6), 1192-1201.

Ronda, C., Maury, J., Jakočiu̅nas, T., Jacobsen, S. A. B., Germann, S. M., Harrison, S. J., ... & Nielsen, A. T. (2015). CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae. Microbial cell factories, 14(1), 1-11.

Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the national academy of sciences, 74(12), 5463-5467.

Sasaki, Y., Mitsui, R., Yamada, R., & Ogino, H. (2019). Secretory overexpression of the endoglucanase by Saccharomyces cerevisiae via CRISPR-δ-integration and multiple promoter shuffling. Enzyme and microbial technology, 121, 17-22.

Schadeweg, V., & Boles, E. (2016). Increasing n-butanol production with Saccharomyces cerevisiae by optimizing acetyl-CoA synthesis, NADH levels and trans-2-enoyl-CoA reductase expression. Biotechnology for biofuels, 9(1), 1-11.

Shi, S., Liang, Y., Zhang, M. M., Ang, E. L., & Zhao, H. (2016). A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae. Metabolic engineering, 33, 19-27.

Siewers, V. (2014). An overview on selection marker genes for transformation of Saccharomyces cerevisiae. Yeast Metabolic Engineering, 3-15.

Singh, A., Chakraborty, D., & Maiti, S. (2016). CRISPR/Cas9: a historical and chemical biology perspective of targeted genome engineering. Chemical Society Reviews, 45(24), 6666-6684.

Smith, J., Grizot, S., Arnould, S., Duclert, A., Epinat, J. C., Chames, P., ... & Duchateau, P. (2006). A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic acids research, 34(22), e149-e149.

Steensels, J., Snoek, T., Meersman, E., Nicolino, M. P., Voordeckers, K., & Verstrepen, K. J. (2014). Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS microbiology reviews, 38(5), 947-995.

Urnov, F. D., Miller, J. C., Lee, Y. L., Beausejour, C. M., Rock, J. M., Augustus, S., ... & Holmes, M. C. (2005). Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature, 435(7042), 646-651.

Vellanki, R. N., Komaravelli, N., Tatineni, R., & Mangamoori, L. N. (2007). Expression of hepatitis B surface antigen in Saccharomyces cerevisiae utilizing glyceraldeyhyde-3-phosphate dehydrogenase promoter of Pichia pastoris. Biotechnology letters, 29(2), 313-318.

Watson, J. D., & Crick, F. H. (2003). A structure for deoxyribose nucleic acid. A century of Nature: twenty-one discoveries that changed science and the world, 82, 13.

Weiss, B., & Richardson, C. C. (1967). Enzymatic breakage and joining of deoxyribonucleic acid, I. Repair of single-strand breaks in DNA by an enzyme system from Escherichia coli infected with T4 bacteriophage. Proceedings of the National Academy of Sciences of the United States of America, 57(4), 1021.

Winzeler, E. A., Shoemaker, D. D., Astromoff, A., Liang, H., Anderson, K., Andre, B., ... & Davis, R. W. (1999). Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. science, 285(5429), 901-906.

Yue, Q., Zhou, X., Leng, Q., Zhang, L., Cheng, B., & Zhang, X. (2013). 7-ketocholesterol-induced caspase-mediated apoptosis in Saccharomyces cerevisiae. FEMS yeast research, 13(8), 796-803.

How to Cite
Imran, Y. I., Ahmed, I. A., & Mhawesh, A. A. (2021). Genome Editing of Saccharomyces Cerevisiae Using CRISPR-Cas9 System. Journal La Lifesci, 2(1), 20-28.