Effect of Glycine Betaine as a Growth Promoter and Stress Mitigator in Brassica oleraceavar. Italica

  • Sana Liaqat Department of Botany, University of Agriculture, Faisalabad, Pakistan
  • Ashir Masroor university of agriculture Faisalabad, Pakistan
  • filza ghafoor University of agriculture, Faisalabad, Pakistan
  • Zunaira Maqsood Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
  • Waseem Tasleem university of agriculture Faisalabad, Pakistan
  • Ashbeel ghafoor University of Agriculture Faisalabad Sub-Campus Burewala, Pakistan
Keywords: Keywords: broccoli, plant physiology, glycine betaine, plant growth


Glycine betaine performs a crucial role as an osmoprotectant and, also acts as a cytoplasmic osmotic solute specifically in the members of family Gramineae and Chenopodiaceae. Brassica oleracea var. Italica due to the presence of glucosinolates and various other chemicals, plays vital roles for humans. GB when applied to broccoli mitigate the stress effects and increase the shoot fresh and dry weight, shoot length, root dry weight, shoot calcium, potassium, nutrient uptake of sodium, calcium, potassium, SOD, peroxidase, and total soluble proteins of broccoli (Brassica oleracea var. Italica). Implementation of GB also enhanced the performance of various parameters such as antioxidant photosynthetic pigments (chlorophyll a, b, a/b, carotenoids, and total chlorophyll), and mineral nutrient use efficiency, nutrient uptake of sodium, calcium and catalase activity.


Ali, S., Chaudhary, A., Rizwan, M., Anwar, H. T., Adrees, M., Farid, M., ... & Anjum, S. A. (2015). Alleviation of chromium toxicity by glycinebetaine is related to elevated antioxidant enzymes and suppressed chromium uptake and oxidative stress in wheat (Triticum aestivum L.). Environmental Science and Pollution Research, 22(14), 10669-10678.

Allakhverdiev, S. I., Nishiyama, Y., Takahashi, S., Miyairi, S., Suzuki, I., & Murata, N. (2005). Systematic analysis of the relation of electron transport and ATP synthesis to the photodamage and repair of photosystem II in Synechocystis. Plant physiology, 137(1), 263-273.

Ashraf, M., & Foolad., M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot., 59: 206-216.

Baenas, N., Moreno, D. A., & GarcĂ­a-Viguera, C. (2012). Selecting sprouts of Brassicaceae for optimum phytochemical composition. Journal of agricultural and food chemistry, 60(45), 11409-11420.

Banu, M. N. A., Hoque, M. A., Watanabe-Sugimoto, M., Matsuoka, K., Nakamura, Y., Shimoishi, Y., & Murata, Y. (2009). Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. Journal of Plant Physiology, 166(2), 146-156.

Bartels, D., & R. Sunkar. (2005). Drought and salt tolerance in plants. Critical reviews in plant sci., 24: 23-58.

Bhuiyan, T. F., M. Hasanuzzaman, J. Mahmud, K. Nahar, A. Rahman, S. Hossain, T. I. Anee1, M. Alam and M. Fujita. (2017). Mitigation of drought stress in rapeseed (Brassica campestris L.) by exogenous application of proline, glycine betaine and trehalose. Environ. Exp. Bot., 12: 44-54.

Chen, T. H., & Murata, N. (2011). Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant, cell & environment, 34(1), 1-20.

Chen, T. H., & Murata, N. (2008). Glycinebetaine: an effective protectant against abiotic stress in plants. Trends in plant science, 13(9), 499-505.

Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual review of plant biology, 51(1), 463-499.

Hossain, M. A., Hasanuzzaman, M., & Fujita, M. (2010). Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiology and Molecular Biology of Plants, 16(3), 259-272.

Iqbal, N., Ashraf, M. Y., & Ashraf, M. (2005). Influence of water stress and exogenous glycinebetaine on sunflower achene weight and oil percentage. International Journal of Environmental Science & Technology, 2(2), 155-160.

Hassini, I., Martinez-Ballesta, M. C., Boughanmi, N., Moreno, D. A., & Carvajal, M. (2017). Improvement of broccoli sprouts (Brassica oleracea L. var. italica) growth and quality by KCl seed priming and methyl jasmonate under salinity stress. Scientia Horticulturae, 226, 141-151.

Khalid, A., Athar, H. U. R., Zafar, Z. U., Akram, A., Hussain, K., Manzoor, H., & Ashraf, M. (2015). Photosynthetic capacity of canola (Brassica napus L.) plants as affected by glycinebetaine under salt stress. J. Appl. Bot. Food Qual, 88, 78-86.

Mahmood, T., Ashraf, M., & Shahbaz, M. (2009). Does exogenous application of glycinebetaine as a pre-sowing seed treatment improve growth and regulate some key physiological attributes in wheat plants grown under water deficit conditions. Pak J Bot, 41(3), 1291-1302.

Meyer, M., & Adam, S. T. (2008). Comparison of glucosinolate levels in commercial broccoli and red cabbage from conventional and ecological farming. European Food Research and Technology, 226(6), 1429-1437.

Hameed, M., Sultana, B., Anwar, F., Aslam, M., Mushtaq, M., & Munir, H. (2015). Changes in proximate composition, biochemical and antioxidant attributes of Broccoli (Brassica oleracea L.) in relation to foliar application of selected plant growth regulators. Pak J Bot, 47, 1685-1691.

Naidu, B. P., Cameron, D. F and Konduri, S. V. (1998). Improving drought tolerance of cotton by glycine betaine application and selection. In Proceedings Australian agronomy conference, Wagga Wagga.

Di Paolo, G., & De Camilli, P. (2006). Phosphoinositides in cell regulation and membrane dynamics. Nature, 443(7112), 651-657.

Rezaei, M. A., Kaviani, B., & Jahanshahi, H. (2012). Application of exogenous glycine betaine on some growth traits of soybean (Glycine max L.) cv. DPX in drought stress conditions. Scientific Research and Essays, 7(3), 432-436.

Rhodes, D., & Hanson, A. D. (1993). Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annual review of plant biology, 44(1), 357-384.

Sakamoto, A., & Murata, N. (2002). The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant, Cell & Environment, 25(2), 163-171.

Shan, T., Jin, P., Zhang, Y., Huang, Y., Wang, X., & Zheng, Y. (2016). Exogenous glycine betaine treatment enhances chilling tolerance of peach fruit during cold storage. Postharvest Biology and Technology, 114, 104-110.

Tisarum, R., Theerawitaya, C., Samphumphuang, T., Singh, H. P., & Cha-um, S. (2020). Foliar application of glycinebetaine regulates soluble sugars and modulates physiological adaptations in sweet potato (Ipomoea batatas) under water deficit. Protoplasma, 257(1), 197-211.

Wang, L., Shan, T., Xie, B., Ling, C., Shao, S., Jin, P., & Zheng, Y. (2019). Glycine betaine reduces chilling injury in peach fruit by enhancing phenolic and sugar metabolisms. Food chemistry, 272, 530-538.

Xing, W., & Rajashekar, C. B. (2001). Glycine betaine involvement in freezing tolerance and water stress in Arabidopsis thaliana. Environmental and Experimental Botany, 46(1), 21-28.

Xu, Z., Sun, M., Jiang, X., Sun, H., Dang, X., Cong, H., & Qiao, F. (2018). Glycinebetaine biosynthesis in response to osmotic stress depends on jasmonate signaling in watermelon suspension cells. Frontiers in plant science, 9, 1469.

Yao, W., Xu, T., Farooq, S. U., Jin, P., & Zheng, Y. (2018). Glycine betaine treatment alleviates chilling injury in zucchini fruit (Cucurbita pepo L.) by modulating antioxidant enzymes and membrane fatty acid metabolism. Postharvest Biology and Technology, 144, 20-28.

How to Cite
Liaqat, S., Masroor, A., ghafoor, filza, Maqsood, Z., Tasleem, W., & ghafoor, A. (2020). Effect of Glycine Betaine as a Growth Promoter and Stress Mitigator in Brassica oleraceavar. Italica. Journal La Lifesci, 1(4), 31-35. https://doi.org/10.37899/journallalifesci.v1i4.206